Previous |  Up |  Next

Article

Title: Complementary matrices in the inclusion principle for dynamic controllers (English)
Author: Bakule, Lubomír
Author: Rodellar, José
Author: Rossell, Josep M.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 3
Year: 2003
Pages: [369]-385
Summary lang: English
.
Category: math
.
Summary: A generalized structure of complementary matrices involved in the input-state- output Inclusion Principle for linear time-invariant systems (LTI) including contractibility conditions for static state feedback controllers is well known. In this paper, it is shown how to further extend this structure in a systematic way when considering contractibility of dynamic controllers. Necessary and sufficient conditions for contractibility are proved in terms of both unstructured and block structured complementary matrices for general expansion/contraction transformation matrices. Explicit sufficient conditions for blocks of complementary matrices ensuring contractibility are proved for general expansion/contraction transformation matrices. Moreover, these conditions are further specialized for a particular class of transformation matrices. The results are derived in parallel for two important cases of the Inclusion Principle namely for the case of expandability of controllers and the case of extensions. (English)
Keyword: linear time-invariant continuous-time systems
Keyword: dynamic controllers
Keyword: inclusion principle
Keyword: large scale systems
Keyword: overlapping
Keyword: decomposition
Keyword: decentralization
MSC: 15A04
MSC: 34A30
MSC: 34H05
MSC: 93A14
MSC: 93A15
MSC: 93B17
MSC: 93B52
idZBL: Zbl 1249.93039
idMR: MR1995741
.
Date available: 2009-09-24T19:54:55Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135539
.
Reference: [1] Bakule L., Rodellar, J., Rossell J. M.: Generalized selection of complementary matrices in the inclusion principle.IEEE Trans. Automat. Control 45 (2000), 6, 1237–1243 Zbl 0990.93002, MR 1778388, 10.1109/9.863615
Reference: [2] Bakule L., Rodellar, J., Rossell J. M.: Structure of expansion–contraction matrices in the inclusion principle for dynamic systems.SIAM J. Matrix Anal. Appl. 21 (2000), 4, 1136–1155 Zbl 0979.93006, MR 1745523, 10.1137/S0895479898340548
Reference: [3] Bakule L., Rodellar, J., Rossell J. M.: Controllability–observability of expanded composite systems.Linear Algebra Appl. 332–334 (2001), 381–400 Zbl 1031.93006, MR 1839441, 10.1016/S0024-3795(01)00269-5
Reference: [4] Bakule L., Rodellar, J., Rossell J. M.: Overlapping quadratic optimal control of linear time–varying commutative systems.SIAM J. Control Optim. 40 (2002), 5, 1611–1627 Zbl 1012.93011, MR 1882811, 10.1137/S0363012900367643
Reference: [5] Bakule L., Rodellar J., Rossell J. M., Rubió P.: Preservation of controllability–observability in expanded systems.IEEE Trans. Automat. Control 46 (2001), 7, 1155–1162 Zbl 1031.93020, MR 1843839, 10.1109/9.935075
Reference: [6] Hodžić M., Šiljak D. D.: Decentralized estimation and control with overlapping information sets.IEEE Trans. Automat. Control 31 (1986), 1, 83–86 Zbl 0584.93006, MR 0822376, 10.1109/TAC.1986.1104116
Reference: [7] İftar A.: Decentralized optimal control with extension.In: Proc. First IFAC Symposium on Design Methods of Control Systems, Zurich 1991, pp. 747–752
Reference: [8] İftar A.: Decentralized estimation and control with overlapping input, state, and output decomposition.Automatica 29 (1993), 2, 511–516 Zbl 0772.93003, MR 1211311, 10.1016/0005-1098(93)90148-M
Reference: [9] İftar A.: Overlapping decentralized dynamic optimal control.Internat. J. Control 58 (1993), 1, 187–209 Zbl 0779.49027, MR 1222143, 10.1080/00207179308922997
Reference: [10] İftar A., Özgüner Ü.: Contractible controller design and optimal control with state and input inclusion.Automatica 26 (1990), 3, 593–597 Zbl 0714.93017, MR 1056141, 10.1016/0005-1098(90)90031-C
Reference: [11] Ikeda M., Šiljak D. D.: Overlapping decompositions, expansions and contractions of dynamic systems.Large Scale Systems 1 (1980), 1, 29–38 Zbl 0443.93009, MR 0617153
Reference: [12] Ikeda M., Šiljak D. D.: Generalized decompositions of dynamic systems and vector Lyapunov functions.IEEE Trans. Automat. Control 26 (1981), 5, 1118–1125 Zbl 0469.93061, MR 0631272, 10.1109/TAC.1981.1102769
Reference: [13] Ikeda M., Šiljak D. D.: Overlapping decentralized control with input, state, and output inclusion.Control–Theory and Advanced Technology 2 (1986), 2, 155–172
Reference: [14] Ikeda M., Šiljak D. D., White D. E.: Decentralized control with overlapping information sets.J. Optim. Theory App. 34 (1981), 2, 279–310 Zbl 0433.93005, MR 0625231, 10.1007/BF00935477
Reference: [15] Ikeda M., Šiljak D. D., White D. E.: An inclusion principle for dynamic systems.IEEE Trans. Automat. Control 29 (1984), 3, 244–249 Zbl 0553.93004, MR 0739610, 10.1109/TAC.1984.1103486
Reference: [16] Stanković S. S., Šiljak D. D.: Contractibility of overlapping decentralized control.Systems Control Lett. 44 (2001), 189–200 Zbl 0986.93005, MR 2009408, 10.1016/S0167-6911(01)00141-4
Reference: [17] Šiljak D. D.: Decentralized Control of Complex Systems.Academic Press, New York 1991 Zbl 0728.93004, MR 1086632
Reference: [18] Šiljak D. D., Mladenović S. M., Stanković S. S.: Overlapping decentralized observation and control of a platoon of vehicles.In: Proc. American Control Conference, San Diego 1999, pp. 4522–4526
.

Files

Files Size Format View
Kybernetika_39-2003-3_13.pdf 2.268Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo