Previous |  Up |  Next

Article

Title: A necessary and sufficient condition for static output feedback stabilizability of linear discrete-time systems (English)
Author: Rosinová, Danica
Author: Veselý, Vojtech
Author: Kučera, Vladimír
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 4
Year: 2003
Pages: [447]-459
Summary lang: English
.
Category: math
.
Summary: Necessary and sufficient conditions for a discrete-time system to be stabilizable via static output feedback are established. The conditions include a Riccati equation. An iterative as well as non-iterative LMI based algorithm with guaranteed cost for the computation of output stabilizing feedback gains is proposed and introduces the novel LMI approach to compute the stabilizing output feedback gain matrix. The results provide the discrete- time counterpart to the results by Kučera and De Souza. (English)
Keyword: discrete-time systems
Keyword: output feedback
Keyword: stabilizability
Keyword: stabilizing feedback
Keyword: Riccati equations
Keyword: LMI approach
MSC: 90C55
MSC: 93B52
MSC: 93C55
MSC: 93D15
idZBL: Zbl 1249.93150
idMR: MR2024525
.
Date available: 2009-09-24T19:55:35Z
Last updated: 2015-03-24
Stable URL: http://hdl.handle.net/10338.dmlcz/135545
.
Reference: [1] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory.SIAM, Philadelphia 15 (1994) Zbl 0816.93004, MR 1284712
Reference: [2] Crusius C. A. R., Trofino A.: Sufficient LMI Conditions for output feedback control problems.IEEE Trans. Automat. Control 44 (1999), 1053–1057 Zbl 0956.93028, MR 1690555, 10.1109/9.763227
Reference: [3] Souza C. E. De, Trofino A.: An LMI Approach to stabilization of linear discrete-time periodic systems.Internat. J. Control 73 (2000), 696–703 Zbl 1006.93578, MR 1765380, 10.1080/002071700403466
Reference: [4] Ghaoui L. El, Balakrishnan V.: Synthesis of fixed structure controllers via numerical optimization.In: Proc. 33rd Conference on Decision and Control, Lake Buena Vista (FL) 1994, pp. 2678–2683
Reference: [5] Goh K. C., Safonov M. G., Papavassilopoulos G. P.: Global optimization for the biaffine matrix inequality problem.J. Global Optimization 7 (1995), 365–380 Zbl 0844.90083, MR 1365801, 10.1007/BF01099648
Reference: [6] Keel L. H., Bhattacharyya S. P., Howze J. W.: Robust control with structured perturbations.IEEE Trans. Automat. Control 33 (1988), 68–78 Zbl 0652.93046, MR 0920931, 10.1109/9.362
Reference: [7] Kolla S. R., Farison J. B.: Reduced-order dynamic compensator design for stability robustness of linear discrete-time systems.IEEE Trans. Automat. Control 36 (1991), 1077–1081 Zbl 0754.93064, MR 1122487, 10.1109/9.83542
Reference: [8] Kučera V., Souza C. E. De: A necessary and sufficient condition for output feedback stabilizability.Automatica 31 (1995), 1357–1359 MR 1349414, 10.1016/0005-1098(95)00048-2
Reference: [9] Levine W. S., Athans M.: On the determination of the optimal constant output feedback gains for linear multivariable systems.IEEE Trans. Automat. Control 15 (1970), 44–49 MR 0274138, 10.1109/TAC.1970.1099363
Reference: [10] Sharav-Schapiro N., Palmor Z. J., Steinberg A.: Output stabilizing robust control for discrete uncertain systems.Automatica 34 (1998), 731–739 Zbl 0934.93060, MR 1632118, 10.1016/S0005-1098(97)00232-X
Reference: [11] Trinh H., Aldeen M.: Design of suboptimal decentralized output feedback controllers for interconnected power system.In: Proc. IMACS Symposium Modeling and Control of Technological System, Casablanca 1991, Vol. 1, pp. 313–319
Reference: [12] Veselý V.: Static output feedback controller design.Kybernetika 37 (2001), 205–221 MR 1839228
Reference: [13] Zhou K. K., Doyle J. C., Glover K.: Robust and Optimal Control.Prentice Hall, Englewood Cliffs, N.J. 1996 Zbl 0999.49500
.

Files

Files Size Format View
Kybernetika_39-2003-4_4.pdf 1.613Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo