Previous |  Up |  Next

Article

Title: A simple solution to the finite-horizon LQ problem with zero terminal state (English)
Author: Ntogramatzidis, Lorenzo
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 4
Year: 2003
Pages: [483]-492
Summary lang: English
.
Category: math
.
Summary: This short paper deals with the classical finite-horizon linear-quadratic regulator problem with the terminal state constrained to be zero, for both continuous and discrete-time systems. Closed-form expressions for the optimal state and costate trajectories of the Hamiltonian system, as well as the corresponding control law, are derived through the solutions of two infinite- horizon LQ problems, thus avoiding the use of the Riccati differential equation. The computation of the optimal value of the performance index, as a function of the initial state, is also presented. (English)
Keyword: finite-horizon LQ problems
Keyword: Hamiltonian system
Keyword: Riccati differential equation
Keyword: algebraic Riccati equation
Keyword: optimal value of the quadratic cost
MSC: 49N10
MSC: 93C15
idZBL: Zbl 1249.49048
idMR: MR2024527
.
Date available: 2009-09-24T19:55:50Z
Last updated: 2015-03-24
Stable URL: http://hdl.handle.net/10338.dmlcz/135547
.
Reference: [1] Anderson B. D. O., Moore J. B.: Optimal Control: Linear Quadratic Methods.Prentice Hall, London 1989 Zbl 0751.49013
Reference: [2] Brunovský P., Komorník J.: LQ preview synthesis: optimal control and worst case analysis.IEEE Trans. Automat. Control 26 (1981), 2, 398–402
Reference: [3] Dorea C. E. T., Milani B. E. A.: Design of L-Q regulators for state constrained continuous-time systems.IEEE Trans. Automat. Control 40 (1995), 3, 544–548 Zbl 0827.49023, MR 1319262, 10.1109/9.376078
Reference: [4] Grimble M. J.: S-domain solution for the fixed end-point optimal-control problem.Proc. IEE 124 (1977), 9, 802–808
Reference: [5] Ionescu V., Oară, C., Weiss M.: Generalized Riccati Theory and Robust Control: a Popov Function Approach.Wiley, New York 1999 Zbl 0915.34024, MR 1681732
Reference: [6] Juang J. N., Turner J. D., Chun H. M.: Closed-form solutions for a class of optimal quadratic regulator problems with terminal constraints.Trans. ASME, J. Dynamic Systems, Measurement Control 108 (1986), 1, 44–48 Zbl 0596.49002, 10.1115/1.3143741
Reference: [7] Kojima A., Ishijima S.: LQ preview synthesis: optimal control and worst case analysis.IEEE Trans. Automat. Control 44 (1999), 2, 352–357 Zbl 1056.93643, MR 1668996, 10.1109/9.746265
Reference: [8] Kwakernaak H., Sivan R.: Linear Optimal Control Systems.Wiley, New York 1972 Zbl 0276.93001, MR 0406607
Reference: [9] Lewis F. L., Syrmos V.: Optimal Control.Wiley, New York 1995
Reference: [10] Marro G., Prattichizzo, D., Zattoni E.: A geometric insight into the discrete time cheap and singular LQR problems.IEEE Trans. Automat. Control 47 (2002), 1, 102–107 MR 1879695, 10.1109/9.981727
Reference: [11] Marro G., Prattichizzo, D., Zattoni E.: A nested computational scheme for discrete-time cheap and singular LQ control.SIAM J. Control Optim. 2002 (to appear)
Reference: [12] Marro G., Prattichizzo, D., Zattoni E.: Previewed signal ${H}_2$ optimal decoupling by finite impulse response compensators.Kybernetika 38 (2002), 4, 479–492 MR 1937142
.

Files

Files Size Format View
Kybernetika_39-2003-4_6.pdf 1.275Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo