Previous |  Up |  Next

Article

Title: 1-Lipschitz aggregation operators and quasi-copulas (English)
Author: Kolesárová, Anna
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 5
Year: 2003
Pages: [615]-629
Summary lang: English
.
Category: math
.
Summary: In the paper, binary 1-Lipschitz aggregation operators and specially quasi-copulas are studied. The characterization of 1-Lipschitz aggregation operators as solutions to a functional equation similar to the Frank functional equation is recalled, and moreover, the importance of quasi-copulas and dual quasi-copulas for describing the structure of 1-Lipschitz aggregation operators with neutral element or annihilator is shown. Also a characterization of quasi-copulas as solutions to a certain functional equation is proved. Finally, the composition of 1-Lipschitz aggregation operators, and specially quasi-copulas, is studied. (English)
Keyword: aggregation operator
Keyword: 1-Lipschitz aggregation operator
Keyword: copula
Keyword: quasi-copula
Keyword: kernel aggregation operator
MSC: 26B35
MSC: 26B99
MSC: 60E05
idZBL: Zbl 1249.60018
idMR: MR2042344
.
Date available: 2009-09-24T19:57:16Z
Last updated: 2015-03-24
Stable URL: http://hdl.handle.net/10338.dmlcz/135559
.
Reference: [1] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distributions functions.Statist. Probab. Lett. 17 (1993) 85–89 MR 1223530, 10.1016/0167-7152(93)90001-Y
Reference: [2] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods.In: Aggregation Operators (T. Calvo, G. Mayor and R. Mesiar, eds.), Physica–Verlag, Heidelberg, 2002, pp. 3–104 Zbl 1039.03015, MR 1936384
Reference: [3] Calvo T., Baets, B. De, Fodor J. C.: The functional equations of Alsina and Frank for uninorms and nullnorms.Fuzzy Sets and Systems 120 (2001), 385–394 MR 1829256
Reference: [4] Calvo T., Mesiar R.: Stability of aggegation operators.In: Proc. 1st Internat. Conference in Fuzzy Logic and Technology (EUSFLAT’2001), Leicester, 2001, pp. 475–478
Reference: [5] Baets B. De, Fodor J.: Generator triplets of additive fuzzy preference structures.In: Proc. Sixth Internat. Workshop on Relational Methods in Computer Science, Tilburg, The Netherlands 2001, pp. 306–315
Reference: [6] DeḂaets B.: T-norms and copulas in fuzzy preference modeling.In: Proc. Linz Seminar’2003, Linz, 2003, p. 101
Reference: [7] Fodor J. C., Yager R. R., Rybalov: Structure of uninorms.Internat. J. of Uncertainty, Fuzziness and Knowledge-based Systems 5 (1997), 411–427 Zbl 1232.03015, MR 1471619, 10.1142/S0218488597000312
Reference: [8] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$.Aequationes Math. 19 (1979), 194–226 Zbl 0444.39003, MR 0556722, 10.1007/BF02189866
Reference: [9] Genest C., Molina L., Lallena, L., Sempi C.: A characterization of quasi-copulas.J. Multivariate Anal. 69 (1999), 193–205 Zbl 0935.62059, MR 1703371, 10.1006/jmva.1998.1809
Reference: [10] Janssens S., Baets B. De, Meyer H. De: Bell-type inequalities for commutative quasi-copulas.Preprint, 2003
Reference: [11] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [12] Kolesárová A., Mordelová J.: 1-Lipschitz and kernel aggregation operators.In: Proc. Summer School on Aggregation Operators (AGOP’2001), Oviedo, Spain 2001, pp. 71–76
Reference: [13] Kolesárová A., Mordelová, J., Muel E.: Kernel aggregation operators and their marginals.Fuzzy Sets and Systems, accepted Zbl 1043.03040, MR 2045341
Reference: [14] Kolesárová A., Mordelová, J., Muel E.: Construction of kernel aggregation operators from marginal functions.Internat. J. of Uncertainty, Fuzziness and Knowledge-based Systems 10/s (2002), 37–50 MR 1962667, 10.1142/S0218488502001818
Reference: [15] Kolesárová A., Mordelová, J., Muel E.: A review of of binary kernel aggregation operators.In: Proc. Summer School on Aggregation Operators (AGOP’2003), Alcalá de Henares, Spain 2003, pp. 97–102
Reference: [16] Mesiar R.: Compensatory operators based on triangular norms.In: Proc. Third European Congress on Intelligent Techniques and Soft Computing (EUFIT’95), Aachen 1995, pp. 131–135
Reference: [17] Nelsen R. B.: An Introduction to Copulas.(Lecture Notes in Statistics 139.) Springer, New York 1999 Zbl 1152.62030, MR 1653203, 10.1007/978-1-4757-3076-0
Reference: [18] Nelsen R. B.: Copulas: an introduction to their properties and applications.Preprint, 2003 Zbl 1079.60021
.

Files

Files Size Format View
Kybernetika_39-2003-5_9.pdf 1.698Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo