Previous |  Up |  Next

Article

Title: A further investigation for Egoroff's theorem with respect to monotone set functions (English)
Author: Li, Jun
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 6
Year: 2003
Pages: [753]-760
Summary lang: English
.
Category: math
.
Summary: In this paper, we investigate Egoroff’s theorem with respect to monotone set function, and show that a necessary and sufficient condition that Egoroff’s theorem remain valid for monotone set function is that the monotone set function fulfill condition (E). Therefore Egoroff’s theorem for non-additive measure is formulated in full generality. (English)
Keyword: non-additive measure
Keyword: monotone set function
Keyword: condition (E)
Keyword: Egoroff's theorem
MSC: 06F05
MSC: 15A06
MSC: 26E25
MSC: 28A10
MSC: 28A20
MSC: 37M99
MSC: 93B25
idZBL: Zbl 1249.93044
idMR: MR2035649
.
Date available: 2009-09-24T19:58:38Z
Last updated: 2015-03-24
Stable URL: http://hdl.handle.net/10338.dmlcz/135570
.
Reference: [1] Halmos P. R.: Measure Theory.Van Nostrand, New York 1968 Zbl 0283.28001, MR 0033869
Reference: [2] Li J., Yasuda M., Jiang Q., Suzuki H., Wang, Z., Klir G. J.: Convergence of sequence of measurable functions on fuzzy measure space.Fuzzy Sets and Systems 87 (1997), 317–323 MR 1449484
Reference: [3] Li J.: On Egoroff’s theorems on fuzzy measure space.Fuzzy Sets and Systems 135 (2003), 367–375 MR 1979605, 10.1016/S0165-0114(02)00219-1
Reference: [4] Li J.: Order continuity of monotone set function and convergence of measurable functions sequence.Applied Mathematics and Computation 135 (2003), 211–218 MR 1937247, 10.1016/S0096-3003(01)00317-4
Reference: [5] Li J., Yasuda M.: Egoroff’s theorems on monotone non-additive measure space.Internat. J. of Uncertainty, Fuzziness and Knowledge-based Systems (to appear) MR 2052989
Reference: [6] Pap E.: Null-additive Set Functions.Kluwer, Dordrecht 1995 Zbl 1003.28012, MR 1368630
Reference: [7] Ralescu D., Adams G.: The fuzzy integral.J. Math. Anal. Appl. 75 (1980), 562–570 Zbl 0438.28007, MR 0581840, 10.1016/0022-247X(80)90101-8
Reference: [8] Taylor S. J.: An alternative form of Egoroff’s theorem.Fundamenta Mathematicae 48 (1960), 169–174 Zbl 0098.26502, MR 0117311
Reference: [9] Wagner E., Wilczyński W.: Convergence almost everywhere of sequences of measurable functions.Colloquium Mathematicum 45 (1981), 119–124 Zbl 0497.28006, MR 0652608
Reference: [10] Wang Z.: The autocontinuity of set function and the fuzzy integral.J. Math. Anal. Appl. 99 (1984), 195–218 Zbl 0581.28003, MR 0732712, 10.1016/0022-247X(84)90243-9
Reference: [11] Wang Z., Klir G. J.: Fuzzy Measure Theory.Plenum Press, New York 1992 Zbl 0812.28010, MR 1212086
.

Files

Files Size Format View
Kybernetika_39-2003-6_7.pdf 1.015Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo