Title:
|
A further investigation for Egoroff's theorem with respect to monotone set functions (English) |
Author:
|
Li, Jun |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
39 |
Issue:
|
6 |
Year:
|
2003 |
Pages:
|
[753]-760 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we investigate Egoroff’s theorem with respect to monotone set function, and show that a necessary and sufficient condition that Egoroff’s theorem remain valid for monotone set function is that the monotone set function fulfill condition (E). Therefore Egoroff’s theorem for non-additive measure is formulated in full generality. (English) |
Keyword:
|
non-additive measure |
Keyword:
|
monotone set function |
Keyword:
|
condition (E) |
Keyword:
|
Egoroff's theorem |
MSC:
|
06F05 |
MSC:
|
15A06 |
MSC:
|
26E25 |
MSC:
|
28A10 |
MSC:
|
28A20 |
MSC:
|
37M99 |
MSC:
|
93B25 |
idZBL:
|
Zbl 1249.93044 |
idMR:
|
MR2035649 |
. |
Date available:
|
2009-09-24T19:58:38Z |
Last updated:
|
2015-03-24 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135570 |
. |
Reference:
|
[1] Halmos P. R.: Measure Theory.Van Nostrand, New York 1968 Zbl 0283.28001, MR 0033869 |
Reference:
|
[2] Li J., Yasuda M., Jiang Q., Suzuki H., Wang, Z., Klir G. J.: Convergence of sequence of measurable functions on fuzzy measure space.Fuzzy Sets and Systems 87 (1997), 317–323 MR 1449484 |
Reference:
|
[3] Li J.: On Egoroff’s theorems on fuzzy measure space.Fuzzy Sets and Systems 135 (2003), 367–375 MR 1979605, 10.1016/S0165-0114(02)00219-1 |
Reference:
|
[4] Li J.: Order continuity of monotone set function and convergence of measurable functions sequence.Applied Mathematics and Computation 135 (2003), 211–218 MR 1937247, 10.1016/S0096-3003(01)00317-4 |
Reference:
|
[5] Li J., Yasuda M.: Egoroff’s theorems on monotone non-additive measure space.Internat. J. of Uncertainty, Fuzziness and Knowledge-based Systems (to appear) MR 2052989 |
Reference:
|
[6] Pap E.: Null-additive Set Functions.Kluwer, Dordrecht 1995 Zbl 1003.28012, MR 1368630 |
Reference:
|
[7] Ralescu D., Adams G.: The fuzzy integral.J. Math. Anal. Appl. 75 (1980), 562–570 Zbl 0438.28007, MR 0581840, 10.1016/0022-247X(80)90101-8 |
Reference:
|
[8] Taylor S. J.: An alternative form of Egoroff’s theorem.Fundamenta Mathematicae 48 (1960), 169–174 Zbl 0098.26502, MR 0117311 |
Reference:
|
[9] Wagner E., Wilczyński W.: Convergence almost everywhere of sequences of measurable functions.Colloquium Mathematicum 45 (1981), 119–124 Zbl 0497.28006, MR 0652608 |
Reference:
|
[10] Wang Z.: The autocontinuity of set function and the fuzzy integral.J. Math. Anal. Appl. 99 (1984), 195–218 Zbl 0581.28003, MR 0732712, 10.1016/0022-247X(84)90243-9 |
Reference:
|
[11] Wang Z., Klir G. J.: Fuzzy Measure Theory.Plenum Press, New York 1992 Zbl 0812.28010, MR 1212086 |
. |