Previous |  Up |  Next

Article

Title: A discussion on aggregation operators (English)
Author: Gómez, Daniel
Author: Montero, Javier
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 1
Year: 2004
Pages: [107]-120
Summary lang: English
.
Category: math
.
Summary: It has been lately made very clear that aggregation processes can not be based upon a unique binary operator. Global aggregation operators have been therefore introduced as families of aggregation operators $\lbrace T_n\rbrace _n$, being each one of these $T_n$ the $n$-ary operator actually amalgamating information whenever the number of items to be aggregated is $n$. Of course, some mathematical restrictions can be introduced, in order to assure an appropriate meaning, consistency and key mathematical capabilities. In this paper we shall discuss these standard conditions, pointing out their respective relevance. (English)
Keyword: aggregation rules
Keyword: logical connectives
Keyword: fuzzy sets
MSC: 03E72
MSC: 68T30
MSC: 68T37
idZBL: Zbl 1249.68229
idMR: MR2068601
.
Date available: 2009-09-24T19:59:46Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135581
.
Reference: [1] Aczél J.: Lectures on Functional Equations and Their Applications.Academic Press, New York 1966 MR 0208210
Reference: [2] Amo A., Montero J., Biging, G., Cutello V.: Fuzzy classification systems.European J. Oper. Res. (to appear) Zbl 1056.90077, MR 2045676
Reference: [3] Amo A. Del, Montero, J., Molina E.: Additive recursive rules.In: Preferences and Decisions Under Incomplete Knowledge (J. Fodor et al, eds.), Physica–Verlag, Heidelberg 2000 MR 1787356
Reference: [4] Amo A. Del, Montero, J., Molina E.: Representation of consistent recursive rules.European J. Oper. Res. 30 (2001), 29–53 MR 1813733, 10.1016/S0377-2217(00)00032-1
Reference: [5] Amo A. del, Montero, J., Biging G.: Classifying pixels by means of fuzzy relations.Internat. J. Gen. Systems 29 (2000), 605–621 10.1080/03081070008960964
Reference: [6] Amo A., Montero J., Fernández A., López M., Tordesillas, J., Biging G.: Spectral fuzzy classification: an application.IEEE Trans. Systems, Man and Cybernetics 32 (2002), 42–48 10.1109/TSMCC.2002.1009135
Reference: [7] Barlow R. E., Proschan F.: Statistical Theory of Reliability and Life Testing.To Begin With, Silver Spring 1981 Zbl 0379.62080
Reference: [8] Cai K. Y.: Introduction to Fuzzy Reliability.Kluwer, Boston 1996 Zbl 0877.68006
Reference: [9] Calvo T., Mayor, G., (eds.) R. Mesiar: Aggregation Operators.Physica–Verlag, Heidelberg 2002 Zbl 0983.00020, MR 1936383
Reference: [10] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods.In: Aggregation Operators (T. Calvo et al, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–104 Zbl 1039.03015
Reference: [11] Cutello V., Montero J.: Recursive families of OWA operators.In: Proc. FUZZ-IEEE Conference (P. P. Bonisone, ed.), IEEE Press, Piscataway 1994, pp. 1137–1141
Reference: [12] Cutello V., Montero J.: Hierarchical aggregation of OWA operators: basic measures and related computational problems.Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 3 (1995), 17–26 Zbl 1232.90323, MR 1321934, 10.1142/S0218488595000037
Reference: [13] Cutello V., Montero J.: Recursive connective rules.Intelligent Systems 14 (1999), 3–20 Zbl 0955.68103
Reference: [14] Baets B. De: Idempotent uninorms.European J. Oper. Res. 118 (1999), 631–642 Zbl 0933.03071, 10.1016/S0377-2217(98)00325-7
Reference: [15] Dombi J.: Basic concepts for a theory of evaluation: the aggregative operator.European J. Oper. Res. 10 (1982), 282–293 Zbl 0488.90003, MR 0665480, 10.1016/0377-2217(82)90227-2
Reference: [16] Fodor J. C., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support.Kluwer, Dordrecht 1994 Zbl 0827.90002
Reference: [17] Fung L. W., Fu K. S.: An axiomatic approach to rational decision making in a fuzzy environment.In: Fuzzy Sets and Their Applications to Cognitive and Decision Processes (L. Zadeh et al, eds.), Academic Press, New York 1975, pp. 227–256 Zbl 0366.90003, MR 0398652
Reference: [18] Golumbic M. C.: Algorithmic Graph Theory and Perfect Graphs.Academic Press, New York 1980 Zbl 1050.05002, MR 0562306
Reference: [19] Gómez D., Montero J., Yáñez J., González-Pachón, J., Cutello V.: Crisp dimension theory and valued preference relations.Internat. J. Gen. Systems (to appear) Zbl 1048.91035
Reference: [20] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [21] Klement E. P., Mesiar, R., Pap E.: On the relationship of associative compensatory operators to triangular norms and conorms.Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 4 (1996), 129–144 Zbl 1232.03041, MR 1390899, 10.1142/S0218488596000081
Reference: [22] Klir G. J., Folger T. A.: Fuzzy Sets, Uncertainty and Information.Prentice Hall, London 1988 Zbl 0675.94025, MR 0930102
Reference: [23] Kolesárová A., Komorníková M.: Triangular norm-based iterative compensatory operators.Fuzzy Sets and Systems 104 (1999), 109–120 Zbl 0931.68123, 10.1016/S0165-0114(98)00263-2
Reference: [24] Mak K. T.: Coherent continuous systems and the generalized functional equation of associativity.Mathem. Oper. Res. 12 (1987), 597–625 Zbl 0648.39006, MR 0913861, 10.1287/moor.12.4.597
Reference: [25] Marichal J. L., Mathonet, P., Tousset E.: Characterization of some aggregation functions stable for positive linear transformations.Fuzzy Sets and Systems 102 (1999), 293–314 Zbl 0952.91020, MR 1674975
Reference: [26] Mas M., Mayor G., Suñer, J., Torrens J.: Generation of multi-dimensional aggregation functions.Mathware and Soft Computing 5 (1998), 233–242 Zbl 0955.03060, MR 1704066
Reference: [27] Mas M., Mayor, G., Torrens J.: T-operators.Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 7 (1999), 31–50 Zbl 1087.03515, MR 1691482, 10.1142/S0218488599000039
Reference: [28] Mayor G., Calvo T.: On extended aggregation functions.In: Proc. IFSA Conference, Volume 1, Academia, Prague 1997, pp. 281–285
Reference: [29] Menger K.: Statistical methods.Proc. Nat. Acad. Sci. U.S.A. 8 (1942), 535–537 MR 0007576, 10.1073/pnas.28.12.535
Reference: [30] Mesiar R.: Compensatory operators based on triangular norms and conorms.In: Proc. EUFIT Conference (H.-J. Zimmermann, ed.), Elite Foundation, Aachen 1995, pp. 131–135
Reference: [31] Mesiar R., Komorníková M.: Aggregation operators.In: Proc. PRIM Conference, Institute of Mathematics, Novi Sad 1997, pp. 193–211 Zbl 0960.03045, MR 1492233
Reference: [32] Mesiar R., Komorníková M.: Triangular norm-based aggregation of evidence under fuzziness.In: Aggregation and Fussion of Imperfect Information (B. Bouchon–Meunier, ed.), Physica–Verlag, Heidelberg 1998, pp. 11–35 MR 1644803
Reference: [33] Montero J.: A note on Fung–Fu’s theorem.Fuzzy Sets and Systems 17 (1985), 259–269 Zbl 0606.90008, MR 0819363
Reference: [34] Montero J.: Aggregation of fuzzy opinions in a fuzzy group.Fuzzy Sets and Systems 25 (1988), 15–20 MR 0918005, 10.1016/0165-0114(88)90095-4
Reference: [35] Montero J., Amo A., Molina, E., Cutello V.: On the relevance of OWA rules.In: Proc. IPMU Conference, Volume 2, Universidad Politécnica de Madrid, Madrid 2000, pp. 992–996
Reference: [36] Montero J., Tejada, J., Yáñez J.: Structural properties of continuous systems.European J. Oper. Res. 45 (1990), 231–240 MR 1061268, 10.1016/0377-2217(90)90188-H
Reference: [37] Pattanaik P. : Voting and Collective Choice.Cambridge Univ. Press, Cambridge 1970
Reference: [38] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North Holland, Amsterdam 1983 Zbl 0546.60010, MR 0790314
Reference: [39] Shirland L. E., Jesse R. R., Thompson R. L., Iacovou C. L.: Determining attribute weights using mathematical programming.Omega 31 (2003), 423–437 10.1016/S0305-0483(03)00081-1
Reference: [40] Trillas E.: Sobre funciones de negación en la teoría de los subconjuntos difusos.Stochastica III-1:47–59, 1983; English version in : Advances of Fuzzy Logic Universidad de Santiago de Compostela (S. Barro et al, eds.), Santiago de Compostela 1998, pp. 31–43
Reference: [41] Walther G.: Granulometric smoothing.Ann. Statist. 25 (1999), 2273–2299 MR 1604445
Reference: [42] Yager R. R.: On ordered averaging aggregation operators in multicriteria decision making.IEEE Trans. Systems, Man and Cybernetics 18 (1988), 183–190 MR 0931863, 10.1109/21.87068
Reference: [43] Yager R. R., Rybalov A.: Uninorm aggregation operators.Fuzzy Sets and Systems 80 (1996), 111–120 Zbl 0871.04007, MR 1389951, 10.1016/0165-0114(95)00133-6
Reference: [44] Zadeh L. A.: Fuzzy Sets.Inform. and Control 8 (1965), 338–353 Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
Reference: [45] Zimmermann H. J., Zysno P.: Latent connectives in human decision making.Fuzzy Sets and Systems 4 (1980), 37–51 Zbl 0435.90009
.

Files

Files Size Format View
Kybernetika_40-2004-1_8.pdf 1.650Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo