Previous |  Up |  Next

Article

Title: Weak structure at infinity and row-by-row decoupling for linear delay systems (English)
Author: Rabah, Rabah
Author: Malabre, Michel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 2
Year: 2004
Pages: [181]-195
Summary lang: English
.
Category: math
.
Summary: We consider the row-by-row decoupling problem for linear delay systems and show some close connections between the design of a decoupling controller and some particular structures of delay systems, namely the so-called weak structure at infinity. The realization by static state feedback of decoupling precompensators is studied, in particular, generalized state feedback laws which may incorporate derivatives of the delayed new reference. (English)
Keyword: structure at infinity
Keyword: row-by-row decoupling
Keyword: delay systems
MSC: 93B10
MSC: 93B52
MSC: 93B60
MSC: 93C05
MSC: 93C23
idZBL: Zbl 1249.93100
idMR: MR2069177
.
Date available: 2009-09-24T20:00:26Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135587
.
Reference: [1] Commault C., Dion J.-M., Descusse J., Lafay J. F., Malabre M.: Influence de la structure à l’infini des systèmes linéaires sur la résolution de problèmes de commande.Autom. Prod. Inform. Indust. (Automatic Control-Production Systems) 20 (1986), 207–252 MR 0846163
Reference: [2] Descusse J., Dion J.-M.: On the structure at infinity of linear square decoupled systems.IEEE Trans. Automat. Control AC-27 (1982), 971–974 Zbl 0485.93042, MR 0680500, 10.1109/TAC.1982.1103041
Reference: [3] Falb P. L., Wolovich W. A.: Decoupling in the design and synthesis of multivariable control systems.IEEE Trans. Automat. Control AC-12 (1967), 651–659 10.1109/TAC.1967.1098737
Reference: [4] Hautus M. L. J.: The formal Laplace transform for smooth linear systems.In: Proc. Internat. Symposium on Mathematical Systems Theory, Udine, Italy, June 1975 (Lecture Notes in Economics and Mathematical Systems 131), Springer-Verlag, Berlin 1975, pp. 29–47 MR 0682787
Reference: [5] Hautus M. L. J.: $(A,B)$-invariant and stabilizability subspaces, a frequency domain description.Automatica 16 (1980), 703–707 Zbl 0455.93015, MR 0607188, 10.1016/0005-1098(80)90012-6
Reference: [6] Kailath T.: Linear System.Prentice Hall, Englewood Cliffs, N. J. 1980 Zbl 0458.93025, MR 0569473
Reference: [7] Malabre M., Kučera V.: Infinite structure and exact model matching: a geometric approach.IEEE Trans. Automat. Control AC-29 (1984), 226–268 10.1109/TAC.1984.1103502
Reference: [8] Malabre M., Martínez-García: The modified disturbance rejection problem with stability: a structural approach.In: Proc. European Control Conference 2 (1993), pp. 1119–1124
Reference: [9] Malabre M., Rabah R.: On infinite zeros for infinite dimensional systems.In: Progress in Systems and Control Theory 3, Realiz. Model. in Syst. Theory, Vol. 1, Birkhaüser, Boston 1990, pp. 19–206 MR 1115331
Reference: [10] Malabre M., Rabah R.: Structure at infinity, model matching and disturbance rejection for linear systems with delays.Kybernetika 29 (1993), 485–498 Zbl 0805.93008, MR 1264881
Reference: [11] Picard P., Lafay J. F., Kučera V.: Model matching for linear systems with delays.In: Proc. 13th IFAC Congress, San Francisco, Volume D, 1996, pp. 183–188
Reference: [12] Rabah R., Malabre M.: Structure at infinity for delay systems revisited.In: IMACS and IEEE-SMC Multiconference CESA’96, Symposium on Modelling, Analysis and Simulation, Lille, France, July 9–12, 1996, pp. 87–90
Reference: [13] Rabah R., Malabre M.: A note on decoupling for linear infinite dimensional systems.In: Proc. 4th IFAC Conference on System Structure and Control, Bucharest, October 23–25, 1997, pp. 78–83
Reference: [14] Rabah R., Malabre M.: On the structure at infinity of linear delay systems with application to the disturbance decoupling problem.Kybernetika 35 (1999), 668–680 MR 1747968
Reference: [15] Rekasius Z. V., Milzareck R. J.: Decoupling without prediction of systems with delays.In: Proc. Joint Automat. Control Conference, San Francisco, CA, 1977
Reference: [16] Sename O., Rabah, R., Lafay J. F.: Decoupling without prediction of linear systems with delays: a structural approach.System Control Lett. 25 (1995), 387–395 Zbl 0877.93053, MR 1343224, 10.1016/0167-6911(94)00086-B
Reference: [17] Silverman L. M., Kitapçi A.: System structure at infinity.In: Outils et Modèles Mathématiques pour l’Automatique, l’Analyse des Systèmes et le Traitement du Signal, Vol. 3, Colloque National, Belle-Ile, 13–18 septembre, Ed. CNRS, Paris 1983, pp. 413–424 Zbl 0529.93018, MR 0733951
Reference: [18] Tzafestas S. G., Paraskevopoulos P. N.: On the decoupling of multivariable control systems with time-delays.Internat. J. Control 17 (1973), 405–415 Zbl 0246.93023, MR 0314498, 10.1080/00207177308932387
Reference: [19] Tsoi A. C.: Recent advances in the algebraic system theory of delay differential equations.In: Recent Theoretical Developments in Control (M. J. Gregson, ed.), Academic Press, New York 1978, pp. 67–127 Zbl 0417.93003, MR 0534622
Reference: [20] Wonham W. M.: Linear Multivariable Control: A Geometric Approach.Springer–Verlag, New York 1985 Zbl 0609.93001, MR 0770574
.

Files

Files Size Format View
Kybernetika_40-2004-2_2.pdf 1.865Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo