Previous |  Up |  Next

Article

Title: Stability estimates of generalized geometric sums and their applications (English)
Author: Gordienko, Evgueni
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 2
Year: 2004
Pages: [257]-272
Summary lang: English
.
Category: math
.
Summary: The upper bounds of the uniform distance $\rho \left(\sum ^\nu _{k=1}X_k,\sum ^\nu _{k=1}\tilde{X}_k\right)$ between two sums of a random number $\nu $ of independent random variables are given. The application of these bounds is illustrated by stability (continuity) estimating in models in queueing and risk theory. (English)
Keyword: geometric sum
Keyword: upper bound for the uniform distance
Keyword: stability
Keyword: risk process
Keyword: ruin probability
MSC: 60E15
MSC: 60G50
MSC: 91B30
idZBL: Zbl 1249.91040
idMR: MR2069182
.
Date available: 2009-09-24T20:01:04Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135592
.
Reference: [1] Asmussen S.: Applied Probability and Queues.Wiley, Chichester 1987 Zbl 1029.60001, MR 0889893
Reference: [2] Brown M.: Error bounds for exponential approximation of geometric convolutions.Ann. Probab. 18 (1990), 1388–1402 MR 1062073, 10.1214/aop/1176990750
Reference: [3] Feller W.: An Introduction to Probability Theory and Its Applications.Volume 2. Wiley, New York 1971 Zbl 0598.60003, MR 0270403
Reference: [4] Gertsbakh I. B.: Asymptotic methods in reliability theory: A review.Adv. in Appl. Probab. 16 (1984), 147–175 Zbl 0528.60085, MR 0732135, 10.2307/1427229
Reference: [5] Gordienko E. I.: Estimates of stability of geometric convolutions.Appl. Math. Lett. 12 (1999), 103–106 Zbl 0944.60035, MR 1750146, 10.1016/S0893-9659(99)00064-6
Reference: [6] Gordienko E. I., Chávez J. Ruiz de: New estimates of continuity in $M|GI|1|\infty $ queues.Queueing Systems Theory Appl. 29 (1998), 175–188 MR 1654484
Reference: [7] Grandell J.: Aspects of Risk Theory.Springer–Verlag, Heidelberg 1991 Zbl 0717.62100, MR 1084370
Reference: [8] Kalashnikov V. V.: Mathematical Methods in Queuing Theory.Kluwer, Dordrecht 1994 Zbl 0836.60098, MR 1319595
Reference: [9] Kalashnikov V. V.: Two-sided bounds of ruin probabilities.Scand. Actuar. J. 1 (1996), 1–18 Zbl 0845.62075, MR 1396522, 10.1080/03461238.1996.10413959
Reference: [10] Kalashnikov V. V.: Geometric Sums: Bounds for Rare Events with Applications.Kluwer, Dordrecht 1997 Zbl 0881.60043, MR 1471479
Reference: [11] Kalashnikov V. V., Rachev S. T.: Mathematical Methods for Construction of Queueing Models.Wadsworth & Brooks/Cole, Pacific Grove 1990 Zbl 0709.60096, MR 1052651
Reference: [12] Petrov V. V.: Sums of Independent Random Variables, Springer–Verlag, Berlin 197. MR 0388499
Reference: [13] Rachev S. T.: Probability Metrics and the Stability of Stochastic Models.Wiley, Chichester 1991 Zbl 0744.60004, MR 1105086
Reference: [14] Senatov V. V.: Normal Approximation: New Results, Methods and Problems.VSP, Utrecht 1998 Zbl 0926.60005, MR 1686374
Reference: [15] Ushakov V. G., Ushakov V. G.: Some inequalities for characteristic functions with bounded variation.Moscow Univ. Comput. Math. Cybernet. 3 (2001), 45–52
Reference: [16] Zolotarev V.: Ideal metrics in the problems of probability theory.Austral. J. Statist. 21 (1979), 193–208 Zbl 0428.62012, MR 0561947, 10.1111/j.1467-842X.1979.tb01139.x
.

Files

Files Size Format View
Kybernetika_40-2004-2_7.pdf 2.361Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo