Previous |  Up |  Next

Article

Title: Some remarks on matrix pencil completion problems (English)
Author: Loiseau, Jean-Jacques
Author: Zagalak, Petr
Author: Mondié, Sabine
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 6
Year: 2004
Pages: [665]-680
Summary lang: English
.
Category: math
.
Summary: The matrix pencil completion problem introduced in [J. J. Loiseau, S. Mondié, I. Zaballa, and P. Zagalak: Assigning the Kronecker invariants to a matrix pencil by row or column completions. Linear Algebra Appl. 278 (1998)] is reconsidered and the latest results achieved in that field are discussed. (English)
Keyword: matrix pencils
Keyword: the Kronecker invariants
Keyword: matrix completion
Keyword: linear systems
Keyword: state feedback
MSC: 15A22
MSC: 93B25
MSC: 93B52
MSC: 93C05
MSC: 93D20
idZBL: Zbl 1249.93081
idMR: MR2120389
.
Date available: 2009-09-24T20:04:58Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135625
.
Reference: [1] Baragaña I., Zaballa I.: Column completion of a pair of matrices.Linear and Multilinear Algebra 27 (1990), 243–273 Zbl 0704.15010, MR 1065067, 10.1080/03081089008818016
Reference: [2] Cabral I., Silva F. C.: Unified theorems on completions of matrix pencils.Linear Algebra and its Applications 159 (1991), 43–54 Zbl 0738.15007, MR 1133334
Reference: [3] Gantmacher F. R.: Matrix Theory.Vol. II. Chelsea, New York 1974
Reference: [4] Hautus M. L. J., Heymann M.: Linear feedback: an algebraic approach.SIAM J. Control Optim. 7 (1978) 50–63 Zbl 0385.93015, MR 0476024
Reference: [5] Herrera A., Mondié S.: On the complete controllability indices assignment problem.To appear
Reference: [6] Heymann M.: Controllability indices and feedback simulation.SIAM J. Control Optim. 14 (1981), 4, 769–789 MR 0439296, 10.1137/0314050
Reference: [7] Kailath T.: Linear Systems.Englewood Cliffs, Prentice–Hall, NJ 1980 Zbl 0870.93013, MR 0569473
Reference: [8] Kronecker L.: Algebraische reduction der schaaren bilinearer formen.S.-B. Akad. Berlin 1890, pp. 763–776
Reference: [9] Kučera V.: Assigning the invariant factors by feedback.Kybernetika 17 (1981), 2, 118–127 MR 0624204
Reference: [10] Loiseau J. J.: Contribution à l’étude des sous–espaces presque invariants.Thèse de Doctorat de l’Université de Nantes, 1986
Reference: [11] Loiseau J. J.: Pole placement and related problems.Kybernetika 28 (1992), 2, 90–100 Zbl 0762.93037, MR 1169212
Reference: [12] Loiseau J. J., Mondié S., Zaballa, I., Zagalak P.: Assigning the Kronecker invariants to a matrix pencil by row or column completions.Linear Algebra Appl. 278 (1998), 327–336 MR 1637316
Reference: [13] Loiseau J. J., Zagalak P.: On a special case of model matching.Internat. J. Control 77 (1994), 2, 164–172 MR 2035020, 10.1080/00207170310001647678
Reference: [14] Mondié S.: Contribución al estudio de modificaciones estructurales de sitemas lineales.Ph.D. Thesis, Dept. Ing. Electrica, CINVESTAV del IPN, México, D.F. 1996
Reference: [15] Mondié S., Loiseau J. J.: Structure assignment of state–output systems by choice of the output equation.In: Proc. IFAC Conference on System Structure and Control, Nantes 1995, pp. 172–177
Reference: [16] Mondié S., Loiseau J. J.: Simultaneous zeros and controllability indices assignment through nonregular static state feedback.In: Proc. 36th IEEE Conference on Decision and Control, San Diego 1997
Reference: [17] Mondié S., Loiseau J. J.: Structure assignment of right invertible implicit systems through nonregular static state feedback.In: Proc. European Control Conference, Brussels 1997
Reference: [18] Mondié S., Zagalak, P., Kučera V.: State feedback in linear control theory.Linear Algebra and its Applications 317 (2000), 177–192 Zbl 0967.93022, MR 1782208
Reference: [19] Morse A. S.: Structural invariants of linear multivariable systems.SIAM J. Control 11 (1973), 446–465 Zbl 0259.93011, MR 0386762, 10.1137/0311037
Reference: [20] Rosenbrock H. H.: State Space and Multivariable Theory.Nelson, London 1970 Zbl 0246.93010, MR 0325201
Reference: [21] Sá E. Marques de: Imbedding conditions for $\lambda $-matrices.Linear Algebra Appl. 24 (1979) , 33–50 Zbl 0395.15009, MR 0524824, 10.1016/0024-3795(79)90145-9
Reference: [22] Thompson R. C.: Interlacing inequalities for invariant factors.Linear Algebra Appl. 24 (1979), 1–31 Zbl 0395.15003, MR 0524823, 10.1016/0024-3795(79)90144-7
Reference: [23] Wolovich W. A.: Multivariable Linear Systems.Springer Verlag, 1974 MR 0359881
Reference: [24] Zaballa I.: Interlacing inequalities and control theory.Linear Algebra Appl. 87 (1987), 113–146 MR 0941293
Reference: [25] Zaballa I.: Feedback invariants of matrix quadruple completions.Linear Algebra Appl. 292 (1999), 73–97 Zbl 0952.93053, MR 1689305
Reference: [26] Zagalak P., Loiseau J. J.: Invariant Factors Assignment in Linear Systems.In: Proc. International Symposium on Implicit and Nonlinear Systems, The University of Texas, Arlington 1992, pp. 197–204
.

Files

Files Size Format View
Kybernetika_40-2004-6_2.pdf 1.789Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo