Previous |  Up |  Next

Article

Title: Exact and approximate distributions for the product of Dirichlet components (English)
Author: Nadarajah, Saralees
Author: Kotz, Samuel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 6
Year: 2004
Pages: [735]-744
Summary lang: English
.
Category: math
.
Summary: It is well known that $X/(X + Y)$ has the beta distribution when $X$ and $Y$ follow the Dirichlet distribution. Linear combinations of the form $\alpha X + \beta Y$ have also been studied in Provost and Cheong [S. B. Provost and Y.-H. Cheong: On the distribution of linear combinations of the components of a Dirichlet random vector. Canad. J. Statist. 28 (2000)]. In this paper, we derive the exact distribution of the product $P = X Y$ (involving the Gauss hypergeometric function) and the corresponding moment properties. We also propose an approximation and show evidence to prove its robustness. This approximation will be useful especially to the practitioners of the Dirichlet distribution. (English)
Keyword: approximation
Keyword: Dirichlet distribution
Keyword: Gauss hypergeometric function
MSC: 33C90
MSC: 62E15
MSC: 62E17
MSC: 62E99
idZBL: Zbl 1249.33013
idMR: MR2120394
.
Date available: 2009-09-24T20:05:45Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135630
.
Reference: [1] Chapman D. G.: Some two-sample tests.Ann. Math. Statist. 21 (1950), 601–606 Zbl 0040.36602, MR 0043423, 10.1214/aoms/1177729755
Reference: [2] Chaubey Y. P., Talukder A. B. M., Enayet, Nur: .Exact moments of a ratio of two positive quadratic forms in normal variables. Comm. Statist. – Theory Methods 12 (1983), 675–679 Zbl 0513.62019, MR 0696814, 10.1080/03610928308828487
Reference: [3] Dobson A. J., Kulasmaa, K., Scherer J.: Confidence intervals for weighted sums of Poisson parameters.Statist. Medicine 10 (1991), 457–462 10.1002/sim.4780100317
Reference: [4] Fan D.-Y.: The distribution of the product of independent beta variables.Comm. Statist. – Theory Methods 20 (1991), 4043–4052 MR 1158562, 10.1080/03610929108830755
Reference: [5] Gradshteyn I. S., Ryzhik I. M.: Table of Integrals, Series, and Products.Sixth edition. Academic Press, San Diego 2000 Zbl 1208.65001, MR 1773820
Reference: [6] Grice J. V., Bain L. J.: Inferences concerning the mean of the gamma distribution.J. Amer. Statist. Assoc. 75 (1980), 929–933 Zbl 0448.62013, MR 0600978, 10.1080/01621459.1980.10477574
Reference: [7] Gupta A. K., Nadarajah S.: Handbook of Beta Distribution and Its Applications.Marcel Dekker, New York 2004 Zbl 1062.62021, MR 2079703
Reference: [8] Jackson O. A. Y.: Fitting a gamma or log-normal distribution to fibre-diameter measurements on wool tops.Appl. Statist. 18 (1969), 70–75 10.2307/2346441
Reference: [9] Johannesson N., Giri N.: On approximations involving the beta distribution.Comm. Statist. – Simulation Computation 24 (1995), 489–503 Zbl 0850.62187, MR 1333048, 10.1080/03610919508813253
Reference: [10] Kamgar-Parsi B., Kamgar-Parsi, B., Brosh M.: Distribution and moments of weighted sum of uniform random variables with applications in reducing Monte Carlo simulations.J. Statist. Comput. Simulation 52 (1995), 399–414 10.1080/00949659508811688
Reference: [11] Kimball C. V., Scheibner D. J.: Error bars for sonic slowness measurements.Geophysics 63 (1998), 345–353 10.1190/1.1444334
Reference: [12] Kotz S., Balakrishnan, N., Johnson N. L.: Continuous Multivariate Distributions.Volume 1: Models and Applications. Second edition. Wiley, New York 2000 Zbl 0946.62001, MR 1788152
Reference: [13] Lai T. L.: Control charts based on weighted sums.Ann. Statist. 2 (1974), 134–147 Zbl 0288.62043, MR 0353604, 10.1214/aos/1176342619
Reference: [14] Linhart H.: Approximate confidence limits for the coefficient of variation of gamma distributions.Biometrics 21 (1965), 733–738 MR 0183053, 10.2307/2528554
Reference: [15] Lowan A. N., Laderman J.: On the distribution of errors in $n$th tabular differences.Ann. Math. Statist. 10 (1939), 360–364 Zbl 0024.05601, MR 0000759, 10.1214/aoms/1177732147
Reference: [16] Malik H. J.: The distribution of the product of two noncentral beta variates.Naval Res. Logist. Quart. 17 (1970), 327–330 Zbl 0225.62017, 10.1002/nav.3800170309
Reference: [17] Mikhail N. N., Tracy D. S.: The exact non-null distribution of Wilk’s $\Lambda $ criterion in the bivariate collinear case.Canad. Math. Bull. 17 (1975), 757–758 MR 0386155, 10.4153/CMB-1974-136-0
Reference: [18] Monti K. L., Sen P. K.: The locally optimal combination of independent test statistics.J. Amer. Statist. Assoc. 71 (1976), 903–911 MR 0426266, 10.1080/01621459.1976.10480967
Reference: [19] Pham-Gia T.: Distributions of the ratios of independent beta variables and applications.Comm. Statist. – Theory Methods 29 (2000), 2693–2715 Zbl 1107.62309, MR 1804259, 10.1080/03610920008832632
Reference: [20] Pham-Gia T., Turkkan N.: Bayesian analysis of the difference of two proportions.Comm. Statist. – Theory Methods 22 (1993), 1755–1771 Zbl 0784.62024, MR 1224989, 10.1080/03610929308831114
Reference: [21] Pham-Gia T., Turkkan N.: Reliability of a standby system with beta component lifelength.IEEE Trans. Reliability (1994), 71–75 10.1109/24.285114
Reference: [22] Pham-Gia, T., Turkkan N.: Distribution of the linear combination of two general beta variables and applications.Comm. Statist. – Theory Methods 27 (1998), 1851–1869 Zbl 0926.62008, MR 1647792, 10.1080/03610929808832194
Reference: [23] Pham-Gia T., Turkkan N.: The product and quotient of general beta distributions.Statist. Papers 43 (2002) , 537–550 Zbl 1008.62016, MR 1932772, 10.1007/s00362-002-0122-y
Reference: [24] Provost S. B., Cheong Y.-H.: On the distribution of linear combinations of the components of a Dirichlet random vector.Canad. J. Statist. 28 (2000), 417–425 Zbl 0986.62037, MR 1792058, 10.2307/3315988
Reference: [25] Provost S. B., Rudiuk E. M.: The exact density function of the ratio of two dependent linear combinations of chi-square variables.Ann. Inst. Statist. Math. 46 (1994), 557–571 Zbl 0817.62005, MR 1309724
Reference: [26] Prudnikov A. P., Brychkov Y. A., Marichev O. I.: Integrals and Series.Volumes 1, 2 and 3. Gordon and Breach Science Publishers, Amsterdam 1986 Zbl 1103.33300
Reference: [27] Rousseau B., Ennis D. M.: A Thurstonian model for the dual pair (4IAX) discrimination method.Perception & Psychophysics 63 (2001), 1083–1090 10.3758/BF03194526
Reference: [28] Sculli D., Wong K. L.: The maximum and sum of two beta variables in the analysis of PERT networks.Omega Internat. J. Manag. Sci. 13 (1985), 233–240 10.1016/0305-0483(85)90061-1
Reference: [29] Stein C.: A two-sample test for a linear hypothesis whose power is independent of the variance.Ann. Math. Statist. 16 (1945), 243–258 Zbl 0060.30403, MR 0013885, 10.1214/aoms/1177731088
Reference: [30] Toyoda T., Ohtani K.: Testing equality between sets of coefficients after a preliminary test for equality of disturbance variances in two linear regressions.J. Econometrics 31 (1986), 67–80 MR 0838853, 10.1016/0304-4076(86)90056-4
Reference: [31] Neumann J. von: Distribution of the ratio of the mean square successive difference to the variance.Ann. Math. Statist. 12 (1941), 367–395 MR 0006656, 10.1214/aoms/1177731677
Reference: [32] Witkovský V.: Computing the distribution of a linear combination of inverted gamma variables.Kybernetika 37 (2001), 79–90 MR 1825758
Reference: [33] Yatchew A. J.: Multivariate distributions involving ratios of normal variables.Comm. Statist. – Theory Methods 15 (1986), 1905–1926 Zbl 0605.62054, MR 0848171, 10.1080/03610928608829226
.

Files

Files Size Format View
Kybernetika_40-2004-6_7.pdf 971.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo