Previous |  Up |  Next

Article

Title: Aggregations preserving classes of fuzzy relations (English)
Author: Drewniak, Józef
Author: Dudziak, Urszula
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 3
Year: 2005
Pages: [265]-284
Summary lang: English
.
Category: math
.
Summary: We consider aggregations of fuzzy relations using means in [0,1] (especially: minimum, maximum and quasilinear mean). After recalling fundamental properties of fuzzy relations we examine means, which preserve reflexivity, symmetry, connectedness and transitivity of fuzzy relations. Conversely, some properties of aggregated relations can be inferred from properties of aggregation results. Results of the paper are completed by suitable examples and counter- examples, which is summarized in a special table at the end of the paper. (English)
Keyword: fuzzy relation
Keyword: reflexivity
Keyword: symmetry
Keyword: connectedness
Keyword: $\star $-transitivity
Keyword: transitivity
Keyword: weak property
Keyword: relation aggregation
Keyword: mean
Keyword: arithmetic mean
Keyword: quasi-arithmetic mean
Keyword: quasilinear mean
Keyword: weighted average
MSC: 03E72
MSC: 68T37
idZBL: Zbl 1249.03092
idMR: MR2181418
.
Date available: 2009-09-24T20:08:45Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135655
.
Reference: [1] Aczél J.: Lectures on Functional Equations and Their Applications.Academic Press, New York 1966 MR 0208210
Reference: [2] Birkhoff G.: Lattice Theory.(Colloq. Publ. 25.) American Mathematical Society, Providence, RI 1967 Zbl 0537.06001, MR 0227053
Reference: [3] Bodenhofer U.: A Similarity-based Generalization of Fuzzy Orderings.Ph.D. Thesis, Universitätsverlag Rudolf Tranuer, Linz 1999 Zbl 1113.03333
Reference: [4] Calvo T., Mayor, G., (eds.) R. Mesiar: Aggregation Operators.Physica–Verlag, Heildelberg 2002 Zbl 0983.00020, MR 1936383
Reference: [5] Cauchy A. L.: Cours d‘analyse de l‘Ecole Royale Polytechnique, Vol.1, Analyse Algébraique, Debure, Paris 1821
Reference: [6] Drewniak J.: Fuzzy Relation Calculus.Silesian University, Katowice 1989 Zbl 0701.04002, MR 1009161
Reference: [7] Drewniak J.: Classes of fuzzy relations.In: Abstracts 12th Internat. Seminar Fuzzy Set Theory (E. P. Klement and L. I. Valverde, eds.), Linz 1990, pp. 36–38
Reference: [8] Drewniak J.: Equations in classes of fuzzy relations.Fuzzy Sets and Systems 75 (1995), 215–228 Zbl 0856.04005, MR 1358224, 10.1016/0165-0114(95)00008-9
Reference: [9] Drewniak J., Drygaś, P., Dudziak U.: Relation of domination.In: Abstracts FSTA 2004, Liptovský Ján 2004, pp. 43–44
Reference: [10] Drewniak J., Dudziak U.: Safe transformations of fuzzy relations.In: Current Issues in Data and Knowledge Engineering (B. De Bayets et al., eds.), EXIT, Warszawa 2004, pp. 195–203
Reference: [11] Fodor J. C., Ovchinnikov S.: On aggregation of $T$-transitive fuzzy binary relations.Fuzzy Sets and Systems 72 (1995), 135–145 Zbl 0845.90010, MR 1335529, 10.1016/0165-0114(94)00346-9
Reference: [12] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support.Kluwer Academic Publishers, Dordrecht 1994 Zbl 0827.90002
Reference: [13] Goguen J. A.: L-fuzzy sets.J. Math. Anal. Appl. 18 (1967), 145–174 Zbl 0145.24404, MR 0224391, 10.1016/0022-247X(67)90189-8
Reference: [14] Kolmogorov A. N.: Sur la notion de la moyenne.Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. 12 (1930), 6, 388–391
Reference: [15] Leclerc B.: Aggregation of fuzzy preferences: A theoretic Arrow-like approach.Fuzzy Sets and Systems 43 (1991), 291–309 Zbl 0747.90005, MR 1137280, 10.1016/0165-0114(91)90256-P
Reference: [16] Ovchinnikov S.: Social choice and Lukasiewicz logic.Fuzzy Sets and Systems 43 (1991), 275–289 Zbl 0742.90010, MR 1137279, 10.1016/0165-0114(91)90255-O
Reference: [17] Ovchinnikov S.: Aggregating transitive fuzzy binary relations.Internat. J. Uncertain. Fuzziness Knowledge-based Systems 3 (1995), 47–55 Zbl 1232.03043, MR 1321937, 10.1142/S0218488595000062
Reference: [18] Peneva V., Popchev I.: Aggregation of fuzzy relations.C. R. Acad. Bulgare Sci. 51 (1998), 9–10, 41–44 MR 1727541
Reference: [19] Peneva V., Popchev I.: Aggregation of fuzzy relations in multicriteria decision making.C. R. Acad. Bulgare Sci. 54 (2001), 4, 47–52 MR 1727541
Reference: [20] Peneva V., Popchev I.: Properties of the aggregation operators related with fuzzy relations.Fuzzy Sets and Systems 139 (2003), 3, 615–633 Zbl 1054.91021, MR 2015157
Reference: [21] Roubens M., Vincke P.: Preference Modelling.Springer–Verlag, Berlin 1985 Zbl 0612.92020, MR 0809182
Reference: [22] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity.Internat. J. Uncertain. Fuzziness Knowledge-based Systems 10 (2002), Suppl., 11–35 Zbl 1053.03514, MR 1962666, 10.1142/S0218488502001806
Reference: [23] Schreider, Ju. A.: Equality, Resemblance, and Order.Mir Publishers, Moscow 1975 MR 0389600
Reference: [24] Wang X.: An investigation into relations between some transitivity-related concepts.Fuzzy Sets and Systems 89 (1997), 257–262 Zbl 0917.90025, MR 1456051, 10.1016/S0165-0114(96)00104-2
Reference: [25] Zadeh L. A.: Fuzzy sets.Inform. and Control 8 (1965), 338–353 Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
Reference: [26] Zadeh L. A.: Similarity relations and fuzzy orderings.Inform. Sci. 3 (1971), 177–200 Zbl 0218.02058, MR 0297650, 10.1016/S0020-0255(71)80005-1
.

Files

Files Size Format View
Kybernetika_41-2005-3_1.pdf 2.294Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo