Previous |  Up |  Next

Article

Title: The color-balanced spanning tree problem (English)
Author: Berežný, Štefan
Author: Lacko, Vladimír
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 4
Year: 2005
Pages: [539]-546
Summary lang: English
.
Category: math
.
Summary: Suppose a graph $G=(V,E)$ whose edges are partitioned into $p$ disjoint categories (colors) is given. In the color-balanced spanning tree problem a spanning tree is looked for that minimizes the variability in the number of edges from different categories. We show that polynomiality of this problem depends on the number $p$ of categories and present some polynomial algorithm. (English)
Keyword: spanning tree
Keyword: matroids
Keyword: algorithms
Keyword: NP-completeness
MSC: 05C05
MSC: 05C15
MSC: 05C85
MSC: 90C27
idZBL: Zbl 1249.05053
idMR: MR2180362
.
Date available: 2009-09-24T20:11:03Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135674
.
Reference: [1] Averbakh I., Berman O.: Categorized bottleneck/minisum path problems on networks.Oper. Res. Lett. 16 (1994), 291–297 Zbl 0823.90122, MR 1316151, 10.1016/0167-6377(94)90043-4
Reference: [2] Berežný Š., Cechlárová, K., Lacko V.: Optimization problems on graphs with categorization of edges.In: Proc. SOR 2001 (V. Rupnik, L. Zadnik-Stirn, and S. Drobne, eds.), Slovenian Society Informatika – Section for Operational Research, Predvor Slovenia 2001, pp. 171–176
Reference: [3] Berežný Š., Cechlárová, K., Lacko V.: A polynomially solvable case of optimization problems on graphs with categorization of edges.In: Proc. 17th Internat. Conference Mathematical Methods in Economics ’99 (J. Plešingr, ed.), Czech Society for Operations Research, Jindřichův Hradec 1999, pp. 25–31
Reference: [4] Berežný Š., Lacko V.: Balanced problems on graphs with categorization of edges.Discuss. Math. Graph Theory 23 (2003), 5–21 Zbl 1050.05112, MR 1987558, 10.7151/dmgt.1182
Reference: [5] Hamacher H. W., Rendl F.: Color constrained combinatorial optimization problems.Oper. Res. Lett. 10 (1991), 211–219 Zbl 0745.90061, MR 1115858, 10.1016/0167-6377(91)90061-S
Reference: [6] Lawler E. L.: Combinatorial Optimization: Networks and Matroids.Holt, Rinehart and Winston, New York 1976 Zbl 1058.90057, MR 0439106
Reference: [7] Punnen A. P.: Traveling salesman problem under categorization.Oper. Res. Lett. 12 (1992), 89–95 Zbl 0768.90077, MR 1188371, 10.1016/0167-6377(92)90069-F
Reference: [8] Richey M. B., Punnen A. P.: Minimum weight perfect bipartite matchings and spanning trees under categorizations.Discrete Appl. Math. 39 (1992), 147–153 MR 1184685, 10.1016/0166-218X(92)90165-7
Reference: [9] Rosen K. H., Michaels J. G.: Handbook of Discrete and Combinatorial Mathematics.CRC Press, New York 1997 Zbl 1044.00002, MR 1725200
.

Files

Files Size Format View
Kybernetika_41-2005-4_8.pdf 1.064Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo