Title:
|
On the optimal number of classes in the Pearson goodness-of-fit tests (English) |
Author:
|
Morales, Domingo |
Author:
|
Pardo, Leandro |
Author:
|
Vajda, Igor |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
41 |
Issue:
|
6 |
Year:
|
2005 |
Pages:
|
[677]-698 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
An asymptotic local power of Pearson chi-squared tests is considered, based on convex mixtures of the null densities with fixed alternative densities when the mixtures tend to the null densities for sample sizes $n\rightarrow \infty .$ This local power is used to compare the tests with fixed partitions $\mathcal{P}$ of the observation space of small partition sizes $|\mathcal{P}|$ with the tests whose partitions $\mathcal{P}=\mathcal{P}_{n}$ depend on $n$ and the partition sizes $|\mathcal{P}_{n}|$ tend to infinity for $n\rightarrow \infty $. New conditions are presented under which it is asymptotically optimal to let $|\mathcal{P}|$ tend to infinity with $n$ or to keep it fixed, respectively. Similar conditions are presented under which the tests with fixed $|\mathcal{P}|$ and those with increasing $|\mathcal{P}_{n}|$ are asymptotically equivalent. (English) |
Keyword:
|
Pearson goodness-of-fit test |
Keyword:
|
Pearson-type goodness-of-fit tests |
Keyword:
|
asymptotic local test power |
Keyword:
|
asymptotic equivalence of tests |
Keyword:
|
optimal number of classes |
MSC:
|
62G10 |
MSC:
|
62G20 |
idZBL:
|
Zbl 1245.62045 |
idMR:
|
MR2193859 |
. |
Date available:
|
2009-09-24T20:12:25Z |
Last updated:
|
2015-03-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135686 |
. |
Reference:
|
[1] Berlinet A., Vajda I.: On asymptotic sufficiency and optimality of quantizations.J. Statist. Plann. Inference 135 (2005), to appear Zbl 1098.62004, MR 2323412 |
Reference:
|
[2] Drost F. C., Kallenberg W. C. M., Moore D. S., Oosterhoff J.: Power approximations to multinomial tests of fit.J. Amer. Statist. Assoc. 89 (1989), 130–141 Zbl 0683.62027, MR 0999671, 10.1080/01621459.1989.10478748 |
Reference:
|
[3] Feller W.: An Introduction to Probability and its Applications, Vol.2. Second edition. Wiley, New York 1966 |
Reference:
|
[4] Ferguson T. S.: Course in Large Sample Theory.Chapman & Hall, London 1996 Zbl 0871.62002, MR 1699953 |
Reference:
|
[5] Greenwood P. E., Nikulin M. S.: A Guide to Chi-Squared Testing.Wiley, New York 1996 Zbl 0853.62037, MR 1379800 |
Reference:
|
[6] Halmos P.: Measure Theory.Academic Press, New York 1964 Zbl 0283.28001 |
Reference:
|
[7] Inglot T., Janic–Wróblewska A.: Data-driven chi-square test for uniformity with unequal cells.J. Statist. Comput. Simul. 73 (2003), 545–561 Zbl 1054.62057, MR 1998668, 10.1080/0094965021000060918 |
Reference:
|
[8] Kallenberg W. C. M., Oosterhoff, J., Schriever B. F.: The number of classes in chi-squared goodness-of-fit tests.J. Amer. Statist. Assoc. 80 (1985), 959–968 Zbl 0582.62037, MR 0819601, 10.1080/01621459.1985.10478211 |
Reference:
|
[9] Liese F., Vajda I.: Convex Statistical Distances.Teubner Verlag, Leipzig 1987 Zbl 0656.62004, MR 0926905 |
Reference:
|
[10] Mann H. B., Wald A.: On the choice of the number of intervals in the application of the chi-squared test.Ann. Math. Statist. 13 (1942), 306–317 MR 0007224, 10.1214/aoms/1177731569 |
Reference:
|
[11] Mayoral A. M., Morales D., Morales, J., Vajda I.: On efficiency of estimation and testing with data quantized to fixed numbers of cells.Metrika 57 (2003), 1–27 MR 1963708, 10.1007/s001840100178 |
Reference:
|
[12] Menéndez M. L., Morales D., Pardo, L., Vajda I.: Asymptotic distributions of $f$-divergences of hypotetical and observed frequencies in sparse testing schemes.Statist. Neerlandica 8 (1998), 313–328 |
Reference:
|
[13] Menéndez M. L., Morales D., Pardo, L., Vajda I.: Approximations to powers of $\phi $-disparity goodness of fit tests.Comm. Statist. – Theory Methods 8 (2001), 313–328 Zbl 1008.62540, MR 1862592 |
Reference:
|
[14] Morris C.: Central limit theorems for multinomial sums.Ann. Statist. 3 (1975), 165–188 Zbl 0305.62013, MR 0370871, 10.1214/aos/1176343006 |
Reference:
|
[15] Vajda I.: On the $f$-divergence and singularity of probability measures.Period. Math. Hungar. 2 (1972), 223–234 Zbl 0248.62001, MR 0335163, 10.1007/BF02018663 |
Reference:
|
[16] Vajda I.: On convergence of information contained in quantized observations.IEEE Trans. Inform. Theory 48 (2002), 2163–2172 Zbl 1062.94533, MR 1930280, 10.1109/TIT.2002.800497 |
Reference:
|
[17] Vajda I.: Asymptotic laws for stochastic disparity statistics.Tatra Mount. Math. Publ. 26 (2003), 269–280 Zbl 1154.62334, MR 2055183 |
. |