Previous |  Up |  Next

Article

Title: On the optimal number of classes in the Pearson goodness-of-fit tests (English)
Author: Morales, Domingo
Author: Pardo, Leandro
Author: Vajda, Igor
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 6
Year: 2005
Pages: [677]-698
Summary lang: English
.
Category: math
.
Summary: An asymptotic local power of Pearson chi-squared tests is considered, based on convex mixtures of the null densities with fixed alternative densities when the mixtures tend to the null densities for sample sizes $n\rightarrow \infty .$ This local power is used to compare the tests with fixed partitions $\mathcal{P}$ of the observation space of small partition sizes $|\mathcal{P}|$ with the tests whose partitions $\mathcal{P}=\mathcal{P}_{n}$ depend on $n$ and the partition sizes $|\mathcal{P}_{n}|$ tend to infinity for $n\rightarrow \infty $. New conditions are presented under which it is asymptotically optimal to let $|\mathcal{P}|$ tend to infinity with $n$ or to keep it fixed, respectively. Similar conditions are presented under which the tests with fixed $|\mathcal{P}|$ and those with increasing $|\mathcal{P}_{n}|$ are asymptotically equivalent. (English)
Keyword: Pearson goodness-of-fit test
Keyword: Pearson-type goodness-of-fit tests
Keyword: asymptotic local test power
Keyword: asymptotic equivalence of tests
Keyword: optimal number of classes
MSC: 62G10
MSC: 62G20
idZBL: Zbl 1245.62045
idMR: MR2193859
.
Date available: 2009-09-24T20:12:25Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135686
.
Reference: [1] Berlinet A., Vajda I.: On asymptotic sufficiency and optimality of quantizations.J. Statist. Plann. Inference 135 (2005), to appear Zbl 1098.62004, MR 2323412
Reference: [2] Drost F. C., Kallenberg W. C. M., Moore D. S., Oosterhoff J.: Power approximations to multinomial tests of fit.J. Amer. Statist. Assoc. 89 (1989), 130–141 Zbl 0683.62027, MR 0999671, 10.1080/01621459.1989.10478748
Reference: [3] Feller W.: An Introduction to Probability and its Applications, Vol.2. Second edition. Wiley, New York 1966
Reference: [4] Ferguson T. S.: Course in Large Sample Theory.Chapman & Hall, London 1996 Zbl 0871.62002, MR 1699953
Reference: [5] Greenwood P. E., Nikulin M. S.: A Guide to Chi-Squared Testing.Wiley, New York 1996 Zbl 0853.62037, MR 1379800
Reference: [6] Halmos P.: Measure Theory.Academic Press, New York 1964 Zbl 0283.28001
Reference: [7] Inglot T., Janic–Wróblewska A.: Data-driven chi-square test for uniformity with unequal cells.J. Statist. Comput. Simul. 73 (2003), 545–561 Zbl 1054.62057, MR 1998668, 10.1080/0094965021000060918
Reference: [8] Kallenberg W. C. M., Oosterhoff, J., Schriever B. F.: The number of classes in chi-squared goodness-of-fit tests.J. Amer. Statist. Assoc. 80 (1985), 959–968 Zbl 0582.62037, MR 0819601, 10.1080/01621459.1985.10478211
Reference: [9] Liese F., Vajda I.: Convex Statistical Distances.Teubner Verlag, Leipzig 1987 Zbl 0656.62004, MR 0926905
Reference: [10] Mann H. B., Wald A.: On the choice of the number of intervals in the application of the chi-squared test.Ann. Math. Statist. 13 (1942), 306–317 MR 0007224, 10.1214/aoms/1177731569
Reference: [11] Mayoral A. M., Morales D., Morales, J., Vajda I.: On efficiency of estimation and testing with data quantized to fixed numbers of cells.Metrika 57 (2003), 1–27 MR 1963708, 10.1007/s001840100178
Reference: [12] Menéndez M. L., Morales D., Pardo, L., Vajda I.: Asymptotic distributions of $f$-divergences of hypotetical and observed frequencies in sparse testing schemes.Statist. Neerlandica 8 (1998), 313–328
Reference: [13] Menéndez M. L., Morales D., Pardo, L., Vajda I.: Approximations to powers of $\phi $-disparity goodness of fit tests.Comm. Statist. – Theory Methods 8 (2001), 313–328 Zbl 1008.62540, MR 1862592
Reference: [14] Morris C.: Central limit theorems for multinomial sums.Ann. Statist. 3 (1975), 165–188 Zbl 0305.62013, MR 0370871, 10.1214/aos/1176343006
Reference: [15] Vajda I.: On the $f$-divergence and singularity of probability measures.Period. Math. Hungar. 2 (1972), 223–234 Zbl 0248.62001, MR 0335163, 10.1007/BF02018663
Reference: [16] Vajda I.: On convergence of information contained in quantized observations.IEEE Trans. Inform. Theory 48 (2002), 2163–2172 Zbl 1062.94533, MR 1930280, 10.1109/TIT.2002.800497
Reference: [17] Vajda I.: Asymptotic laws for stochastic disparity statistics.Tatra Mount. Math. Publ. 26 (2003), 269–280 Zbl 1154.62334, MR 2055183
.

Files

Files Size Format View
Kybernetika_41-2005-6_1.pdf 2.398Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo