Title:
|
The least trimmed squares. Part I: Consistency (English) |
Author:
|
Víšek, Jan Ámos |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
42 |
Issue:
|
1 |
Year:
|
2006 |
Pages:
|
1-36 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The consistency of the least trimmed squares estimator (see Rousseeuw [Rous] or Hampel et al. [HamRonRouSta]) is proved under general conditions. The assumptions employed in paper are discussed in details to clarify the consequences for the applications. (English) |
Keyword:
|
robust regression |
Keyword:
|
the least trimmed squares |
Keyword:
|
consistency |
Keyword:
|
discussion of assumptions and of algorithm for evaluation of estimator |
MSC:
|
62F12 |
MSC:
|
62F35 |
MSC:
|
62F40 |
MSC:
|
62J05 |
idZBL:
|
Zbl 1248.62033 |
idMR:
|
MR2208518 |
. |
Date available:
|
2009-09-24T20:13:34Z |
Last updated:
|
2015-03-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135697 |
. |
Related article:
|
http://dml.cz/handle/10338.dmlcz/135708 |
Related article:
|
http://dml.cz/handle/10338.dmlcz/135709 |
. |
Reference:
|
[1] Andrews D. W. K.: Consistency in nonlinear econometric models: A generic uniform law of large numbers.Econometrica 55 (1987), 1465–1471 Zbl 0646.62101, MR 0923471, 10.2307/1913568 |
Reference:
|
[2] Bickel P. J.: One-step Huber estimates in the linear model.J. Amer. Statist. Assoc. 70 (1975), 428–433 Zbl 0322.62038, MR 0386168, 10.1080/01621459.1975.10479884 |
Reference:
|
[3] Breiman L.: Probability.Addison–Wesley, London 1968 Zbl 0753.60001, MR 0229267 |
Reference:
|
[4] Chatterjee S., Hadi A. S.: Sensitivity Analysis in Linear Regression.Wiley, New York 1988 Zbl 0648.62066, MR 0939610 |
Reference:
|
[5] Csőrgő M., Révész P.: Strong Approximation in Probability and Statistics.Akademia Kiadó, Budapest 1981 MR 0666546 |
Reference:
|
[6] Dhrymes P. J.: Introductory Econometrics.Springer–Verlag, New York 1978 Zbl 0388.62096, MR 0545505 |
Reference:
|
[7] Jurečková J., Sen P. K.: Regression rank scores scale statistics and studentization in linear models.In: Proc. Fifth Prague Symposium on Asymptotic Statistics, Physica Verlag, Heidelberg 1993, pp. 111–121 MR 1311932 |
Reference:
|
[8] Hampel F. R., Ronchetti E. M., Rousseeuw P. J., Stahel W. A.: Robust Statistics – The Approach Based on Influence Functions.Wiley, New York 1986 Zbl 0733.62038, MR 0829458 |
Reference:
|
[9] Hettmansperger T. P., Sheather S. J.: A cautionary note on the method of least median squares.Amer. Statist. 46 (1992), 79–83 MR 1165565 |
Reference:
|
[10] Liese F., Vajda I.: Consistency of $M$-estimators in general models.J. Multivar. Anal. 50 (1994), 93–114 MR 1292610, 10.1006/jmva.1994.1036 |
Reference:
|
[11] Portnoy S.: Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles. In: Robust and Nonlinear Time-Series Analysis (J. Franke, W. Härdle, and D. Martin, eds.), Springer–Verlag, New York 1983, pp. 231–246 MR 0786311 |
Reference:
|
[12] Prigogine I., Stengers I.: La Nouvelle Alliance.SCIENTIA 1977, Issues 5–12 |
Reference:
|
[13] Prigogine I., Stengers I.: Out of Chaos.William Heinemann Ltd, London 1984 MR 0102205 |
Reference:
|
[14] Rousseeuw P. J.: Least median of square regression.J. Amer. Statist. Assoc. 79 (1984), 871–880 MR 0770281, 10.1080/01621459.1984.10477105 |
Reference:
|
[15] Rousseeuw P. J., Leroy A. M.: Robust Regression and Outlier Detection.Wiley, New York 1987 Zbl 0711.62030, MR 0914792 |
Reference:
|
[16] Rubio A. M., Víšek J. Á.: A note on asymptotic linearity of $M$-statistics in nonlinear models.Kybernetika 32 (1996), 353–374 Zbl 0882.62053, MR 1420128 |
Reference:
|
[17] Rubio A. M., Víšek J. Á.: Estimating the contamination level of data in the framework of linear regression analysis.Qüestiió 21 (1997), 9–36 Zbl 1167.62388, MR 1476149 |
Reference:
|
[18] Štěpán J.: Teorie pravděpodobnosti (Probability Theory).Academia, Prague 1987 |
Reference:
|
[19] Huffel S. Van: Total least squares and error-in-variables modelling: Bridging the gap between statistics, computational mathematics and enginnering.In: Proc. Computational Statistics, COMPSTAT 2004 (J. Antoch, ed.), Physica–Verlag, Springer 2004, pp. 539–555 MR 2173049 |
Reference:
|
[20] Víšek J. Á.: On high breakdown point estimation.Comput. Statistics 11 (1996), 137–146 Zbl 0933.62015, MR 1394545 |
Reference:
|
[21] Víšek J. Á.: Sensitivity analysis $M$-estimates.Ann. Inst. Statist. Math. 48 (1996), 469–495 MR 1424776, 10.1007/BF00050849 |
Reference:
|
[22] Víšek J. Á.: Ekonometrie I (Econometrics I).Carolinum, Publishing House of Charles University, Prague 1997 |
Reference:
|
[23] Víšek J. Á.: Robust specification test.In: Proc. Prague Stochastics’98 (M. Hušková, P. Lachout, and J. Á. Víšek, eds.), Union of Czechoslovak Mathematicians and Physicists, Prague 1998, pp. 581–586 |
Reference:
|
[24] Víšek J. Á.: Robust instruments.In: Robust’98 (J. Antoch and G. Dohnal, eds.), Union of Czechoslovak Mathematicians and Physicists, Prague 1998, pp. 195–224 |
Reference:
|
[25] Víšek J. Á.: Robust estimation of regression model.Bull. Czech Econometric Society 9 (1999), 57–79 |
Reference:
|
[26] Víšek J. Á.: The least trimmed squares – random carriers.Bull. Czech Econometric Society 10 (1999), 1–30 |
Reference:
|
[27] Víšek J. Á.: The robust regression and the experiences from its application on estimation of parameters in a dual economy.In: Proc. Macromodels’99, Rydzyna 1999, pp. 424–445 |
Reference:
|
[28] Víšek J. Á.: On the diversity of estimates.Comput. Statist. Data Anal. 34 (2000) 67–89 Zbl 1052.62509, 10.1016/S0167-9473(99)00068-7 |
Reference:
|
[29] Víšek J. Á.: Regression with high breakdown point.In: Robust 2000 (J. Antoch and G. Dohnal, eds.), Union of Czechoslovak Mathematicians and Physicists, Prague 2001, pp. 324–356 |
Reference:
|
[30] Víšek J. Á.: A new paradigm of point estimation.In: Proc. Data Analysis 2000/II, Modern Statistical Methods – Modelling, Regression, Classification and Data Mining (K. Kupka, ed.), TRYLOBITE, Pardubice 2000, 195–230 |
Reference:
|
[31] Víšek J. Á.: Sensitivity analysis of $M$-estimates of nonlinear regression model: Influence of data subsets.Ann. Inst. Statist. Math. 54 (2002), 2, 261–290 Zbl 1013.62072, MR 1910173, 10.1023/A:1022465701229 |
Reference:
|
[32] Víšek J. Á.: $\sqrt{n}$-consistency of empirical distribution function of residuals in linear regression model.Probab. Lett., submitted |
Reference:
|
[33] Zvára K.: Regresní analýza (Regression Analysis).Academia, Prague 1989 |
. |