Previous |  Up |  Next

Article

Title: The least trimmed squares. Part I: Consistency (English)
Author: Víšek, Jan Ámos
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 1
Year: 2006
Pages: 1-36
Summary lang: English
.
Category: math
.
Summary: The consistency of the least trimmed squares estimator (see Rousseeuw [Rous] or Hampel et al. [HamRonRouSta]) is proved under general conditions. The assumptions employed in paper are discussed in details to clarify the consequences for the applications. (English)
Keyword: robust regression
Keyword: the least trimmed squares
Keyword: consistency
Keyword: discussion of assumptions and of algorithm for evaluation of estimator
MSC: 62F12
MSC: 62F35
MSC: 62F40
MSC: 62J05
idZBL: Zbl 1248.62033
idMR: MR2208518
.
Date available: 2009-09-24T20:13:34Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135697
.
Related article: http://dml.cz/handle/10338.dmlcz/135708
Related article: http://dml.cz/handle/10338.dmlcz/135709
.
Reference: [1] Andrews D. W. K.: Consistency in nonlinear econometric models: A generic uniform law of large numbers.Econometrica 55 (1987), 1465–1471 Zbl 0646.62101, MR 0923471, 10.2307/1913568
Reference: [2] Bickel P. J.: One-step Huber estimates in the linear model.J. Amer. Statist. Assoc. 70 (1975), 428–433 Zbl 0322.62038, MR 0386168, 10.1080/01621459.1975.10479884
Reference: [3] Breiman L.: Probability.Addison–Wesley, London 1968 Zbl 0753.60001, MR 0229267
Reference: [4] Chatterjee S., Hadi A. S.: Sensitivity Analysis in Linear Regression.Wiley, New York 1988 Zbl 0648.62066, MR 0939610
Reference: [5] Csőrgő M., Révész P.: Strong Approximation in Probability and Statistics.Akademia Kiadó, Budapest 1981 MR 0666546
Reference: [6] Dhrymes P. J.: Introductory Econometrics.Springer–Verlag, New York 1978 Zbl 0388.62096, MR 0545505
Reference: [7] Jurečková J., Sen P. K.: Regression rank scores scale statistics and studentization in linear models.In: Proc. Fifth Prague Symposium on Asymptotic Statistics, Physica Verlag, Heidelberg 1993, pp. 111–121 MR 1311932
Reference: [8] Hampel F. R., Ronchetti E. M., Rousseeuw P. J., Stahel W. A.: Robust Statistics – The Approach Based on Influence Functions.Wiley, New York 1986 Zbl 0733.62038, MR 0829458
Reference: [9] Hettmansperger T. P., Sheather S. J.: A cautionary note on the method of least median squares.Amer. Statist. 46 (1992), 79–83 MR 1165565
Reference: [10] Liese F., Vajda I.: Consistency of $M$-estimators in general models.J. Multivar. Anal. 50 (1994), 93–114 MR 1292610, 10.1006/jmva.1994.1036
Reference: [11] Portnoy S.: Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles. In: Robust and Nonlinear Time-Series Analysis (J. Franke, W. Härdle, and D. Martin, eds.), Springer–Verlag, New York 1983, pp. 231–246 MR 0786311
Reference: [12] Prigogine I., Stengers I.: La Nouvelle Alliance.SCIENTIA 1977, Issues 5–12
Reference: [13] Prigogine I., Stengers I.: Out of Chaos.William Heinemann Ltd, London 1984 MR 0102205
Reference: [14] Rousseeuw P. J.: Least median of square regression.J. Amer. Statist. Assoc. 79 (1984), 871–880 MR 0770281, 10.1080/01621459.1984.10477105
Reference: [15] Rousseeuw P. J., Leroy A. M.: Robust Regression and Outlier Detection.Wiley, New York 1987 Zbl 0711.62030, MR 0914792
Reference: [16] Rubio A. M., Víšek J. Á.: A note on asymptotic linearity of $M$-statistics in nonlinear models.Kybernetika 32 (1996), 353–374 Zbl 0882.62053, MR 1420128
Reference: [17] Rubio A. M., Víšek J. Á.: Estimating the contamination level of data in the framework of linear regression analysis.Qüestiió 21 (1997), 9–36 Zbl 1167.62388, MR 1476149
Reference: [18] Štěpán J.: Teorie pravděpodobnosti (Probability Theory).Academia, Prague 1987
Reference: [19] Huffel S. Van: Total least squares and error-in-variables modelling: Bridging the gap between statistics, computational mathematics and enginnering.In: Proc. Computational Statistics, COMPSTAT 2004 (J. Antoch, ed.), Physica–Verlag, Springer 2004, pp. 539–555 MR 2173049
Reference: [20] Víšek J. Á.: On high breakdown point estimation.Comput. Statistics 11 (1996), 137–146 Zbl 0933.62015, MR 1394545
Reference: [21] Víšek J. Á.: Sensitivity analysis $M$-estimates.Ann. Inst. Statist. Math. 48 (1996), 469–495 MR 1424776, 10.1007/BF00050849
Reference: [22] Víšek J. Á.: Ekonometrie I (Econometrics I).Carolinum, Publishing House of Charles University, Prague 1997
Reference: [23] Víšek J. Á.: Robust specification test.In: Proc. Prague Stochastics’98 (M. Hušková, P. Lachout, and J. Á. Víšek, eds.), Union of Czechoslovak Mathematicians and Physicists, Prague 1998, pp. 581–586
Reference: [24] Víšek J. Á.: Robust instruments.In: Robust’98 (J. Antoch and G. Dohnal, eds.), Union of Czechoslovak Mathematicians and Physicists, Prague 1998, pp. 195–224
Reference: [25] Víšek J. Á.: Robust estimation of regression model.Bull. Czech Econometric Society 9 (1999), 57–79
Reference: [26] Víšek J. Á.: The least trimmed squares – random carriers.Bull. Czech Econometric Society 10 (1999), 1–30
Reference: [27] Víšek J. Á.: The robust regression and the experiences from its application on estimation of parameters in a dual economy.In: Proc. Macromodels’99, Rydzyna 1999, pp. 424–445
Reference: [28] Víšek J. Á.: On the diversity of estimates.Comput. Statist. Data Anal. 34 (2000) 67–89 Zbl 1052.62509, 10.1016/S0167-9473(99)00068-7
Reference: [29] Víšek J. Á.: Regression with high breakdown point.In: Robust 2000 (J. Antoch and G. Dohnal, eds.), Union of Czechoslovak Mathematicians and Physicists, Prague 2001, pp. 324–356
Reference: [30] Víšek J. Á.: A new paradigm of point estimation.In: Proc. Data Analysis 2000/II, Modern Statistical Methods – Modelling, Regression, Classification and Data Mining (K. Kupka, ed.), TRYLOBITE, Pardubice 2000, 195–230
Reference: [31] Víšek J. Á.: Sensitivity analysis of $M$-estimates of nonlinear regression model: Influence of data subsets.Ann. Inst. Statist. Math. 54 (2002), 2, 261–290 Zbl 1013.62072, MR 1910173, 10.1023/A:1022465701229
Reference: [32] Víšek J. Á.: $\sqrt{n}$-consistency of empirical distribution function of residuals in linear regression model.Probab. Lett., submitted
Reference: [33] Zvára K.: Regresní analýza (Regression Analysis).Academia, Prague 1989
.

Files

Files Size Format View
Kybernetika_42-2006-1_1.pdf 1.005Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo