Previous |  Up |  Next

Article

Title: The least trimmed squares. Part II: $\sqrt{n}$-consistency (English)
Author: Víšek, Jan Ámos
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 2
Year: 2006
Pages: 181-202
Summary lang: English
.
Category: math
.
Summary: $\sqrt{n}$-consistency of the least trimmed squares estimator is proved under general conditions. The proof is based on deriving the asymptotic linearity of normal equations. (English)
Keyword: robust regression
Keyword: the least trimmed squares
Keyword: $\sqrt{n}$-consistency
Keyword: asymptotic normality
MSC: 62F12
MSC: 62F35
MSC: 62F40
MSC: 62J05
idZBL: Zbl 1248.62034
idMR: MR2241784
.
Date available: 2009-09-24T20:15:12Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135708
.
Related article: http://dml.cz/handle/10338.dmlcz/135697
Related article: http://dml.cz/handle/10338.dmlcz/135709
.
Reference: [1] Čížek P.: Analýza citlivosti $k$-krokových $M$-odhadů (Sensitivity analysis of $k$-step $M$-estimators, in Czech).Diploma Thesis, Czech Technical University, Prague 1996
Reference: [2] Hewitt E., Stromberg K.: Real and Abstract Analysis.Springer–Verlag, Berlin 1965 Zbl 0307.28001, MR 0367121
Reference: [3] Víšek J. Á.: Sensitivity analysis $M$-estimates.Ann. Inst. Statist. Math. 48 (1996), 469–495 MR 1424776, 10.1007/BF00050849
Reference: [4] Víšek J. Á.: The least trimmed squares.Part I. Consistency. Kybernetika 42 (2006), 1–36 MR 2208518
Reference: [5] Víšek J. Á.: Kolmogorov–Smirnov statistics in linear regression.In: Proc. ROBUST 2006, submitted
.

Files

Files Size Format View
Kybernetika_42-2006-2_5.pdf 1.004Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo