Previous |  Up |  Next

Article

Keywords:
triangular norm; copula; fuzzy implication; fuzzy relation; MV algebra; effect algebra
Summary:
Several open problems posed during FSTA 2006 (Liptovský Ján, Slovakia) are presented. These problems concern the classification of strict triangular norms, Lipschitz t-norms, interval semigroups, copulas, semicopulas and quasi- copulas, fuzzy implications, means, fuzzy relations, MV-algebras and effect algebras.
References:
[1] Aczél J.: Lectures on Functional Equations and their Applications. Academic Press, New York 1966 MR 0208210
[2] Alsina C., Frank M. J., Schweizer B.: Problems on associative functions. Aequationes Math. 66 (2003), 128–140 DOI 10.1007/s00010-003-2673-y | MR 2003460 | Zbl 1077.39021
[3] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85–89 DOI 10.1016/0167-7152(93)90001-Y | MR 1223530 | Zbl 0798.60023
[4] Baczyński M., Drewniak J.: Conjugacy classes of fuzzy implication. In: Computational Intelligence: Theory and Applications (B. Reusch, ed., Lecture Notes in Computer Science 1625). Springer–Verlag, Berlin 1999, pp. 287–298 MR 1713698
[5] Budinčević M., Kurilić M. S.: A family of strict and discontinuous triangular norms. Fuzzy Sets and Systems 95 (1998), 381–384 MR 1609804 | Zbl 0922.04006
[6] Butnariu D., Klement E. P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions. Kluwer Academic Publishers, Dordrecht 1993 MR 2867321 | Zbl 0804.90145
[7] Butnariu D., Klement E. P., Mesiar, R., Navara M.: Sufficient triangular norms in many-valued logics with standard negation. Arch. Math. Logic 44 (2005), 829–849 DOI 10.1007/s00153-004-0267-6 | MR 2192157 | Zbl 1085.03018
[8] Darsow W. F., Nguyen, B., Olsen E. T.: Copulas and Markov processes. Illinois J. Math. 36 (1992), 600–642 MR 1215798 | Zbl 0770.60019
[9] Baets B. De, Mesiar R.: Discrete triangular norms. In: Topological and Algebraic Structures in Fuzzy Sets. A Handbook of Recent Developments in the Mathematics of Fuzzy Sets (S. E. Rodabaugh and E. P. Klement, eds.), Chapter 14, Kluwer Academic Publishers, Dordrecht 2003, pp. 389–400 MR 2046749 | Zbl 1037.03046
[10] Fodor J. C., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994 Zbl 0827.90002
[11] Genest C., Quesada-Molina J. J., Rodríguez-Lallena J. A., Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205 DOI 10.1006/jmva.1998.1809 | MR 1703371 | Zbl 0935.62059
[12] Ricci R. Ghiselli, Navara M.: Convexity conditions on t-norms and their additive generators. Fuzzy Sets and Systems 151 (2005), 353–361 MR 2124885
[13] Hilbert D.: Mathematical problems. Bull. Amer. Math. Soc. 8 (1901/02), 437–479 DOI 10.1090/S0002-9904-1902-00923-3 | MR 1557926
[14] Jenei S.: On Archimedean triangular norms. Fuzzy Sets and Systems 99 (1998), 179–186 DOI 10.1016/S0165-0114(97)00021-3 | MR 1646173 | Zbl 0938.03083
[15] Karaçal F.: An answer to an open problem on triangular norms. Fuzzy Sets and Systems 155 (2005), 459–463 MR 2181002 | Zbl 1077.03512
[16] Khrennikov A., Nánásiová O.: Representation theorem of observables on a quantum system. Preprint 2003 MR 2241859 | Zbl 1104.81020
[17] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 MR 1790096 | Zbl 1087.20041
[18] Klement E. P., Mesiar, R., Pap E.: Problems on triangular norms and related operators. Fuzzy Sets and Systems 145 (2004), 471–479 MR 2075842 | Zbl 1050.03019
[19] Ling C. M.: Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189–212 MR 0190575
[20] Mesiar R., Novák V.: Open problems from the 2nd International Conference on Fuzzy Sets Theory and Its Applications. Fuzzy Sets and Systems 81 (1996), 185–190 MR 1392780 | Zbl 0877.04003
[21] Mesiarová A.: Continuous triangular subnorms. Fuzzy Sets and Systems 142 (2004), 75–83 MR 2045344 | Zbl 1043.03018
[22] Mesiarová A.: A note on two open problems of Alsina, Frank and Schweizer. Aequationes Math. (to appear) MR 2258805 | Zbl 1101.39011
[23] Moynihan R.: On $\tau _T$ semigroups of probability distribution functions II. Aequationes Math. 17 (1978), 19–40 DOI 10.1007/BF01818536 | MR 0480843 | Zbl 0386.22005
[24] Nánásiová O.: On conditional probabilities on quantum logic. Internat. J. Theor. Phys. 25 (1987), 155–162
[25] Nánásiová O.: Map for simultaneous measurements for a quantum logic. Internat. J. Theor. Phys. 42 (2003), 1889–1903 DOI 10.1023/A:1027384132753 | MR 2023910 | Zbl 1053.81006
[26] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer, New York 1999 DOI 10.1007/978-1-4757-3076-0 | MR 1653203 | Zbl 1152.62030
[27] Ouyang Y., Li J.: An answer to an open problem on triangular norms. Inform. Sci. 175 (2005), 78–84 DOI 10.1016/j.ins.2004.10.011 | MR 2162505 | Zbl 1077.03513
[28] Sarkoci P.: Dominance is not transitive even on continuous triangular norms. Submitted for publication
[29] Schweizer B., Sklar A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313–334 DOI 10.2140/pjm.1960.10.313 | MR 0115153 | Zbl 0096.33203
[30] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, New York 1983 MR 0790314 | Zbl 0546.60010
[31] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600
[32] Sklar A.: Random variables, joint distribution functions, and copulas. Kybernetika 9 (1973), 449–460 MR 0345164 | Zbl 0292.60036
[33] Riečanová Z.: Distributive atomic effect algebras. Demonstratio Math. 36 (2003), 247–259 MR 1984337
[34] Riečanová Z.: Modular atomic effect algebras and the existence of subadditive states. Kybernetika 40 (2004), 459–468 MR 2102364
[35] Riečanová Z.: Archimedean atomic effect algebras in which all sharp elements are central. Preprint
Partner of
EuDML logo