Previous |  Up |  Next

Article

Title: Aggregation operators on partially ordered sets and their categorical foundations (English)
Author: Demirci, Mustafa
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 3
Year: 2006
Pages: 261-277
Summary lang: English
.
Category: math
.
Summary: In spite of increasing studies and investigations in the field of aggregation operators, there are two fundamental problems remaining unsolved: aggregation of $L$-fuzzy set-theoretic notions and their justification. In order to solve these problems, we will formulate aggregation operators and their special types on partially ordered sets with universal bounds, and introduce their categories. Furthermore, we will show that there exists a strong connection between the category of aggregation operators on partially ordered sets with universal bounds (Agop) and the category of partially ordered groupoids with universal bounds (Pogpu). Moreover, the subcategories of Agop consisting of associative aggregation operators, symmetric and associative aggregation operators and associative aggregation operators with neutral elements are, respectively, isomorphic to the subcategories of Pogpu formed by partially ordered semigroups, commutative partially ordered semigroups and partially ordered monoids in the sense of Birkhoff. As a justification of the present notions and results, some relevant examples for aggregations operators on partially ordered sets are given. Particularly, aggregation process in probabilistic metric spaces is also considered. (English)
Keyword: category theory
Keyword: aggregation operator
Keyword: associative aggregation operator
Keyword: partially ordered groupoid
Keyword: partially ordered semigroup
Keyword: partially ordered monoid
MSC: 03E72
MSC: 03G10
MSC: 06F05
MSC: 08C05
MSC: 18A15
idZBL: Zbl 1249.03091
idMR: MR2253388
.
Date available: 2009-09-24T20:15:44Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135713
.
Reference: [1] Adámek J., Herrlich, H., Strecker G. E.: Abstract and Concrete Categories.Wiley, New York 1990 Zbl 1113.18001, MR 1051419
Reference: [2] Atanassov K. T.: Intuitionistic fuzzy sets.Fuzzy Sets and Systems 20 (1986), 87–96 Zbl 0631.03040, MR 0852871, 10.1016/S0165-0114(86)80034-3
Reference: [3] Birkhoff G.: Lattice Theory.Third edition. Amer. Math. Soc. Colloquium Publications, Amer. Math. Soc., Providence, RI 1967 Zbl 0537.06001, MR 0227053
Reference: [4] Calvo T., Mayor, G., (eds.) R. Mesiar: Aggregation Operators.New Trends and Applications. (Studies in Fuzziness and Soft Computing, Vol. 97.) Physica-Verlag, Heidelberg 2002 Zbl 0983.00020, MR 1936383
Reference: [5] Deschrijver G., Kerre E. E.: On the relationship between some extensions of fuzzy set theory.Fuzzy Sets and Systems 133 (2003), 227–235 Zbl 1013.03065, MR 1949024
Reference: [6] Deschrijver G., Kerre E. E.: Implicators based on binary aggregation operators in interval-valued fuzzy set theory.Fuzzy Sets and Systems 153 (2005), 229–248 Zbl 1090.03024, MR 2150282
Reference: [7] Deschrijver G., Kerre E. E.: Triangular norms and related operators in L$^{\ast }$-fuzzy set theory.In: Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms (E. P. Klement and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 231–259 Zbl 1079.03043, MR 2165237
Reference: [8] Dubois D., Prade H.: Fuzzy Sets and Systems.Theory and Applications. Academic Press, New York 1980 Zbl 0444.94049, MR 0589341
Reference: [9] Fodor J. C., Yager R. R., Rybalov A.: Structure of uninorms.Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 5 (1997), 411–427 Zbl 1232.03015, MR 1471619, 10.1142/S0218488597000312
Reference: [10] Höhle U., (eds.) S. E. Rodabaugh: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory.Kluwer Academic Publishers, Boston 1999 Zbl 0942.00008, MR 1788899
Reference: [11] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Vol. 8 of Trends in Logic. Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [12] Lázaro J., Calvo T.: XAO Operators – The interval universe.In: Proc. 4th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2005), pp. 198–203
Reference: [13] Mizumoto M., Tanaka K.: Some properties of fuzzy sets of type 2.Inform. and Control 31 (1976), 312–340 Zbl 0331.02042, MR 0449947, 10.1016/S0019-9958(76)80011-3
Reference: [14] Sambuc R.: Fonctions $\Phi $-floues.Application à l’aide au diagnostic en pathologie thyroidienne, Ph. D. Thesis, Université de Marseille 1975
Reference: [15] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity.Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 10 (2002), 11–35 Zbl 1053.03514, MR 1962666, 10.1142/S0218488502001806
Reference: [16] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North–Holland, New York 1983 Zbl 0546.60010, MR 0790314
Reference: [17] Zadeh L. A.: Fuzzy sets.Inform. and Control 8 (1965), 338–353 Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
.

Files

Files Size Format View
Kybernetika_42-2006-3_2.pdf 851.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo