Previous |  Up |  Next

Article

Title: SPR0 substitutions and families of algebraic Riccati equations (English)
Author: Fernández-Anaya, G.
Author: Martínez García, J. C.
Author: Kučera, Vladimír
Author: Aguilar George, D.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 5
Year: 2006
Pages: 605-616
Summary lang: English
.
Category: math
.
Summary: We study in this paper Algebraic Riccati Equations associated with single-input single-output linear time-invariant systems bounded in $H_{\infty }$-norm. Our study is focused in the characterization of families of Algebraic Riccati Equations in terms of strictly positive real (of zero relative degree) substitutions applied to the associated $H_{\infty }$-norm bounded system, each substitution characterizing then a particular member of the family. We also consider here Algebraic Riccati Equations associated with systems characterized by both an $H_{\infty }$-norm constraint and an upper bound on their corresponding McMillan degree. (English)
Keyword: linear time invariant systems
Keyword: positive real substitutions
Keyword: properties preservation
Keyword: algebraic Riccati equations
Keyword: $H_{\infty }$-norm bounded systems
MSC: 15A24
MSC: 93B25
MSC: 93B36
idZBL: Zbl 1249.93042
idMR: MR2283508
.
Date available: 2009-09-24T20:19:09Z
Last updated: 2015-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/135738
.
Reference: [1] Anderson B. D. O., Vongpanitlerd S.: Network Analysis and Synthesis – A Modern Systems Approach.Prentice Hall, Englewood Cliffs, NJ 1972
Reference: [2] Anderson B. D. O., Bitmead R., Johnson C., Kokotovic P., Kosut R., Mareels I., Praly, L., Riedle B.: Stability of Adaptive Systems – Passivity and Averaging Analysis.MIT Press, Cambridge, MA 1982 MR 0846209
Reference: [3] Anderson B. D. O., Dasgupta S., Khargonekar P., Krauss K. J., Mansour M.: Robust strict positive realness: characterization and construction.IEEE Trans. Circuits and Systems 37 (1990), 869–876 MR 1061872, 10.1109/31.55062
Reference: [4] Bittanti S., Laub A. J., (eds.) J. C. Willems: The Riccati Equation.Springer–Verlag, Heidelberg 1991 Zbl 0734.34004, MR 1132048
Reference: [5] Fernández G., Muñoz S., Sánchez R. A., Mayol W. W.: Simultaneous stabilization using evolutionary strategies.Internat. J. Control 68 (1997), 1417–1435 Zbl 0887.93054, MR 1694487, 10.1080/002071797223091
Reference: [6] Fernández G.: Preservation of SPR functions and stabilization by substitutions in SISO plants.IEEE Trans. Automat. Control 44 (1999), 2171–2174 Zbl 1136.93422, MR 1735738, 10.1109/9.802939
Reference: [7] Fernández G., Martínez-García J. C., Kučera V.: $H_{\infty }$-robustness preservation in SISO systems when applying SPR substitutions.Internat. J. Control 76 (2003), 728–740 MR 1979893, 10.1080/0020717031000105562
Reference: [8] Fernández G., Martínez-García J. C., Aguilar-George D.: Preservation of solvability conditions in Riccati equations when applying SPR0 substitutions.In: Proc. 41th IEEE Conference on Decision and Control, 2002, pp. 1048–1053
Reference: [9] Fernández G., Martínez-García J. C., Kučera, V., Aguilar-George D.: MIMO systems properties preservation under SPR substitutions.IEEE Trans. Circuits and Systems. II-Briefs 51 (2004), 222–227
Reference: [10] Goodwin G. C., Sin K. S.: Adaptive Filtering, Prediction and Control.Prentice–Hall, Englewood–Cliffs, NJ 1984 Zbl 0653.93001
Reference: [11] Khalil H. K.: Nonlinear Systems.Prentice–Hall, Englewood–Cliffs, NJ 1996 Zbl 1140.93456
Reference: [12] Kharitonov V. L.: Asymptotic stability of families of systems of linear differential equations.Differential’nye Uravneniya 14 (1978), 2086–2088 MR 0516709
Reference: [13] Lozano R., Brogliato B., Maschke, B., Egeland O.: Dissipative Systems Analysis and Control – Theory and Applications.Springer–Verlag, London 2000 Zbl 1121.93002, MR 1843623
Reference: [14] Narendra K. S., Annaswamy A. M.: Stable Adaptive Systems.Prentice–Hall, Englewood Cliffs, NJ 1989 Zbl 1217.93081
Reference: [15] Narendra K. S., Taylor J. H.: Frequency Domain Criteria for Absolute Stability.Academic Press, New York 1973 Zbl 0266.93037, MR 0329710
Reference: [16] Polyak B. T., Tsypkin, Ya. Z.: Stability and robust stability of uniform systems.Automat. Remote Control 57 (1996), 1606–1617 Zbl 0932.93062, MR 1622194
Reference: [18] Wang L.: Robust stability of a class of polynomial families under nonlinearly correlated perturbations.System Control Lett. 30 (1997), 25–30 Zbl 0901.93048, MR 1438055, 10.1016/S0167-6911(96)00073-4
Reference: [19] Wen J. T.: Time domain and frequency conditions for strict positive realness.IEEE Trans. Automat. Control 33 (1988), 988–992 MR 0959031, 10.1109/9.7263
Reference: [20] Zhou K., Doyle J. C., Glover K.: Robust and Optimal Control, Upper Saddle River.Prentice-Hall, Inc., Simon & Schuster, Englewood–Cliffs, NJ 1995
.

Files

Files Size Format View
Kybernetika_42-2006-5_6.pdf 923.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo