Previous |  Up |  Next

Article

Title: Locally weighted neural networks for an analysis of the biosensor response (English)
Author: Baronas, Romas
Author: Ivanauskas, Feliksas
Author: Maslovskis, Romualdas
Author: Radavičius, Marijus
Author: Vaitkus, Pranas
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 1
Year: 2007
Pages: 21-30
Summary lang: English
.
Category: math
.
Summary: This paper presents a semi-global mathematical model for an analysis of a signal of amperometric biosensors. Artificial neural networks were applied to an analysis of the biosensor response to multi-component mixtures. A large amount of the learning and test data was synthesized using computer simulation of the biosensor response. The biosensor signal was analyzed with respect to the concentration of each component of the mixture. The paradigm of locally weighted linear regression was used for retraining the neural networks. The application of locally weighted regression significantly improved the quality of the prediction of the concentrations. (English)
Keyword: locally weighted regression
Keyword: artificial neural network
Keyword: modelling
Keyword: biosensor
MSC: 62J12
MSC: 62M45
MSC: 62P10
MSC: 68T05
MSC: 92C45
MSC: 92C55
idZBL: Zbl 1136.62374
idMR: MR2343328
.
Date available: 2009-09-24T20:20:47Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/135751
.
Reference: [1] Artursson T., Eklöv T., Lundström I., Mårtensson P., Sjöström, M., Holmberg M.: Drift correction for gas sensors using multivariate methods.J. Chemometrics 14 (2000), 711–723 10.1002/1099-128X(200009/12)14:5/6<711::AID-CEM607>3.0.CO;2-4
Reference: [2] Atkeson C. G., Moore A. W., Schaal S.: Locally weighted learning.Artificial Intelligence Rev. 11 (1997), 11–73 10.1023/A:1006559212014
Reference: [3] Baronas R., Christensen J., Ivanauskas, F., Kulys J.: Computer simulation of amperometric biosensor response to mixtures of compounds.Nonlinear Anal. Model. Control 7 (2002), 3–14 Zbl 1062.93500
Reference: [4] Baronas R., Ivanauskas, F., Kulys J.: The influence of the enzyme membrane thickness on the response of amperometric biosensors.Sensors 3 (2003), 248–262 10.3390/s30700248
Reference: [5] Baronas R., Ivanauskas F., Maslovskis, R., Vaitkus P.: An analysis of mixtures using amperometric biosensors and artificial neural networks.J. Math. Chem. 36 (2004), 281–297 Zbl 1053.92024, MR 2105018, 10.1023/B:JOMC.0000044225.76158.8e
Reference: [6] Chan L. W., Szeto C. C.: Training recurrent network with block-diagonal approximated Levenberg–Marquardt algorithm.In: Proc. IEEE Internat. Joint Conference on Neural Networks, IJCNN ’99, pp. 1521–1526, 1999
Reference: [7] Devroye L., Gyorfi, L., Lugosi G.: A Probabilistic Theory of Pattern Recognition.Springer–Verlag, New York 1996 MR 1383093
Reference: [8] Haykin S.: Neural Networks: A Comprehensive Foundation.Second edition. Prentice Hall, New York 1999 Zbl 0934.68076
Reference: [9] INTELLISENS: Intelligent Signal Processing of Biosensor Arrays Using Pattern Recognition for Characterisation of Wastewater: Aiming Towards Alarm Systems.EC RTD project. 2000 – 2003
Reference: [10] Malkavaara P., Alén, R., Kolehmainen E.: Chemometrics: an important tool for the modern chemist, an example from wood-processing chemistry.J. Chem. Inf. Comput. Sci. 40 (2000), 438–441 10.1021/ci990444i
Reference: [11] Martens H., Næs T.: Multivariate Calibration.Wiley, Chichester 1989 Zbl 0732.62109, MR 1029523
Reference: [12] Moore A. W., Schneider J. G., Deng K.: Efficient Locally Weighted Polynomial Regression Predictions.In: Proc. Fourteenth International Conference on Machine Learning, pp. 236–244, 1997
Reference: [13] Nakamoto T., Hiramatsu H.: Study of odor recorder for dynamical change of odor using QCM sensors and neural network.Sens. Actuators B 85 (2002), 98–105 10.1016/S0925-4005(02)00130-2
Reference: [14] Patterson D.: Artificial Neural Networks, Theory and Applications.Prentice Hall, Upper Saddle River 1996 Zbl 0839.68079
Reference: [15] Rao C. R.: Linear Statistical Inference and its Application.Wiley, New York 1973 MR 0346957
Reference: [16] Rogers K. R.: Biosensors for environmental applications.Biosens. Biolectron. 10 (1995), 533–541 10.1016/0956-5663(95)96929-S
Reference: [17] Ruppert D., Wand M. P.: Multivariate locally weighted least squares regression.Ann. Statist. 22 (1994), 1346–1370 Zbl 0821.62020, MR 1311979, 10.1214/aos/1176325632
Reference: [18] Ruzicka J., Hansen E. H.: Flow Injection Analysis.Wiley, New York 1988
Reference: [19] Samarskii A. A.: The Theory of Difference Schemes.Marcel Dekker, New York – Basel 2001 Zbl 0971.65076, MR 1818323
Reference: [20] Schaal S., Atkeson C. G.: Assessing the quality of learned local models, In: Advances in Neural Information Processing Systems 6 (J.Cowan, G. Tesauro, J. Alspector, eds.), Morgan Kaufmann 1994, pp. 160–167
Reference: [21] Schaal S., Atkeson C. G.: Constructive incremental learning from only local information.Neural Comput. 10 (1998), 2047–2084 10.1162/089976698300016963
Reference: [22] Scheller F., Schubert F.: Biosensors, Vol.7. Elsevier, Amsterdam 1992
Reference: [23] Schulmeister T.: Mathematical modelling of the dynamics of amperometric enzyme electrodes.Selective Electrode Rev. 12 (1990), 260–303
Reference: [24] Turner A. P. F., Karube, I., Wilson G. S.: Biosensors: Fundamentals and Applications.Oxford University Press, Oxford 1987
Reference: [25] Wang Z., Isaksson, T., Kowalski B. R.: New approach for distance measurement in locally weighted regression.Anal. Chem. 66 (1994), 249–260 10.1021/ac00074a012
Reference: [26] Wollenberger U., Lisdat, F., Scheller F. W.: Frontiers in Biosensorics 2: Practical Applications.Birkhauser Verlag, Basel 1997
Reference: [27] Ziegler C., Göpel W., Hämmerle H., Hatt H., Jung G., Laxhuber L., Schmidt H.-L., Schütz S., Vögtle, F., Zell A.: Bioelectronic noses: A status report.Part II. Biosens. Bioelectron. 13 (1998), 539–571
.

Files

Files Size Format View
Kybernetika_43-2007-1_2.pdf 754.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo