Previous |  Up |  Next

Article

Title: $M$-estimation in nonlinear regression for longitudinal data (English)
Author: Orsáková, Martina
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 1
Year: 2007
Pages: 61-74
Summary lang: English
.
Category: math
.
Summary: The longitudinal regression model $Z_i^j=m(\theta _0,{\mathbb{X}}_i(T_i^j))+ \varepsilon _i^j,$ where $Z_i^j$ is the $j$th measurement of the $i$th subject at random time $T_i^j$, $m$ is the regression function, ${\mathbb{X}}_i(T_i^j)$ is a predictable covariate process observed at time $T_i^j$ and $\varepsilon _i^j$ is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth $M$-estimator of unknown parameter $\theta _0$. (English)
Keyword: $M$-estimation
Keyword: nonlinear regression
Keyword: longitudinal data
MSC: 60G55
MSC: 62F10
MSC: 62F12
MSC: 62M10
idZBL: Zbl 1252.62069
idMR: MR2343331
.
Date available: 2009-09-24T20:21:11Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/135754
.
Reference: [1] Andersen P. K., Borgan Ø.: Counting process for life history data: A review.Scand. J. Statistist. 12 (1985), 97–158 MR 0808151
Reference: [2] Andersen P. K., Borgan Ø., Gill R. D., Keiding N.: Statistical Models Based on Counting Processes.Springer, New York 1991 Zbl 0824.60003
Reference: [3] Billingsley P.: Covergence of Probability Measures.Wiley, New York 1999 MR 1700749
Reference: [4] Boel R., Varaiya, P., Wong E.: Martingales on jump processes.SIAM J. Control 13 (1975), 999–1061 Zbl 0372.60062, MR 0400379, 10.1137/0313064
Reference: [5] Diggle P. J., Heagerty P., Liang K. Y., Zeger S. L.: Analysis of Longitudinal Data.Oxford Univ. Press, Oxford 2002 Zbl 1031.62002, MR 2049007
Reference: [6] Flemming T. R., Harrington D. P.: Counting Processes and Survival Analysis.Wiley, New York 1991 MR 1100924
Reference: [7] Huber P. J.: Robust Statistics.Wiley, New York 1981 MR 0606374
Reference: [8] Jacobsen M.: Statistical Analysis of Counting Processes.Springer, New York 1982 Zbl 0518.60065, MR 0676128
Reference: [9] Jacod J., Shiryaev A. N.: Limit Theorems for Stochastic Processes.Springer, New York 2002 Zbl 1018.60002, MR 0959133
Reference: [10] Jarník V.: Differential Calculus II (in Czech).Academia, Prague 1984
Reference: [11] Jurečková J., Sen P. K.: Uniform second order asymptotic linearity of $M$-statistics in linear models.Statist. Decisions 7 (1989), 263–276 MR 1029480
Reference: [12] Klein J. P., Moeschberger M. L.: Survival Analysis.Springer, New York 1997 Zbl 1011.62106
Reference: [13] Last G., Brandt A.: Marked Point Processes on the Real Line, The Dynamic Approach.Springer, New York 1995 Zbl 0829.60038, MR 1353912
Reference: [14] Lehmann E.: Theory of Point Estimation.Wiley, New York 1983 Zbl 0916.62017, MR 0702834
Reference: [15] Liang K. Y., Zeger S. L.: Longitudinal data analysis using generalized linear models.Biometrika 73 (1986), 13–22 Zbl 0595.62110, MR 0836430, 10.1093/biomet/73.1.13
Reference: [16] Lindsey J. K.: Models for Repeated Measurements.Oxford Univ. Press, Oxford 1999 MR 1256487
Reference: [17] Martinussen T., Scheike T. H.: A Non-Parametric Dynamic Additive Regression Model for Longitudinal Data.Research Report, Copenhagen 1998
Reference: [18] Martinussen T., Scheike T. H.: A Semi-Parametric Additive Regression Model for Longitudinal Data.Research Report, Copenhagen 1998
Reference: [19] Orsáková M.: Models for censored data.In: Proc. $8^{{\mathrm th}}$ Annual Conference of Doctoral Students WDS’99, Faculty of Mathematics and Physics, Charles Univ. Prague 1999
Reference: [20] Orsáková M.: Regression models for longitudinal data.In: Proc. Robust’2000, Union of the Czech Mathematicians and Physicists, Prague 2001, pp. 210–216
Reference: [21] Rebolledo R.: Central limit theorem for local martingales.Z. Wahrsch. verw. Geb. 51 (1980), 269–286 MR 0566321, 10.1007/BF00587353
Reference: [22] Rubio A. M., Víšek J. Á.: A note on asymptotic linearity of $M$-statistics in nonlinear models.Kybernetika 32 (1996), 353–374 Zbl 0882.62053, MR 1420128
Reference: [23] Scheike T. H.: Parametric regression for longitudinal data with counting process measurement times.Scand. J. Statistist. 21 (1994), 245–263 Zbl 0815.62064, MR 1292638
Reference: [24] Scheike T. H., Zhang M.: Cumulative regression tests for longitudinal data.Annals Statist. (1998), 1328–1354
Reference: [25] Štěpán J.: The Theory of Probability (in Czech).Academia, Prague 1987
.

Files

Files Size Format View
Kybernetika_43-2007-1_5.pdf 895.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo