Title:
|
A new characterization of geometric distribution (English) |
Author:
|
Maiti, Sudhansu S. |
Author:
|
Biswas, Atanu |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
43 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
97-102 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A characterization of geometric distribution is given, which is based on the ratio of the real and imaginary part of the characteristic function. (English) |
Keyword:
|
discrete distribution |
Keyword:
|
exponential |
Keyword:
|
lack of memory |
MSC:
|
60E10 |
MSC:
|
62E10 |
idZBL:
|
Zbl 1140.62307 |
idMR:
|
MR2343334 |
. |
Date available:
|
2009-09-24T20:21:47Z |
Last updated:
|
2013-09-21 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135757 |
. |
Reference:
|
[1] Arnold B. C.: Two characterizations of the geometric distribution.J. Appl. Probab. 17 (1980), 570–573 Zbl 0428.60017, MR 0568969, 10.2307/3213048 |
Reference:
|
[2] Bary N. K.: A Treatise on Trigonometric Series.Pergamon Press, Oxford 1964 Zbl 0129.28002 |
Reference:
|
[3] Crawford G. B.: Characterization of geometric and exponential distributions.Ann. Math. Statist. 37 (1966), 1790–1795 Zbl 0144.42303, MR 0207009, 10.1214/aoms/1177699167 |
Reference:
|
[4] El-Neweihi E., Govindarajulu Z.: Characterizations of geometric distributions and discrete IFR (DFR) distributions using order statistics.J. Statist. Plann. Inf. 3 (1979), 85–90 MR 0529875, 10.1016/0378-3758(79)90044-2 |
Reference:
|
[5] Ferguson T. S.: A characterization of the geometric distribution.Amer. Math. Monthly 71 (1965), 256–260 Zbl 0127.10705, MR 0193653, 10.2307/2313692 |
Reference:
|
[6] Ferguson T. S.: On characterizing distributions by properties of order statistics.Sankhya Series A 20 (1967), 265–278 Zbl 0155.27302, MR 0226804 |
Reference:
|
[7] Ferguson T. S.: On a Rao-Shanbhag characterization of the exponential/geometric distribution.Sankhya Series A 64 (2002), 247–255 Zbl 1192.62033, MR 1981756 |
Reference:
|
[8] Fosam E. B., Shanbhag D. N.: Certain characterizations of exponential and geometric distributions.J. Royal Statist. Soc. Series B 56 (1994), 157–160 Zbl 0788.62016, MR 1257803 |
Reference:
|
[9] (1975) J. Galambos: Characterizations of probability distributions by properties of order statistics.In: Statistical Distributions in Scientific Work, Vol. 2: Characterizations and Appplications (G. P. Patil, S. Kotz, and J. K. Ord, eds.), D. Reidel, Boston 1975, II, pp. 89–101 |
Reference:
|
[10] Henze N., Meintanis S. G.: Goodness-of-fit tests based on a new characterization of the exponential distribution.Commun. Statist. – Theory and Methods 31 (2002), 1479–1497 Zbl 1008.62043, MR 1925077, 10.1081/STA-120013007 |
Reference:
|
[11] Hitha N., Nair U. N.: Characterization of some discrete models by properties of residual life function.Cal. Statist. Assoc. Bulletin 38 (1989), 219–223 Zbl 0715.62023, MR 1060161 |
Reference:
|
[12] Kalbfleish J. D., Prentice R. L.: The Statistical Analysis of Failure Time Data.Wiley, New York 1980 MR 0570114 |
Reference:
|
[13] Meintanis S. G., Iliopoulos G.: Characterizations of the exponential distribution based on certain properties of its characteristic function.Kybernetika 39 (2003), 295–298 MR 1995733 |
Reference:
|
[14] Rainville E. D.: Infinite Series.The Macmillan Company, New York 1967 Zbl 0173.05702 |
Reference:
|
[15] Rao B. L. S. P., Sreehari M.: On some properties of geometric distribution.Sankhya Series A 42 (1980), 120–122 MR 0637996 |
Reference:
|
[16] Rogers G. S.: An alternate proof of the characterization of the density $Ax^{B}$.Amer. Math. Monthly 70 (1963), 857–858 MR 1532316, 10.2307/2312673 |
Reference:
|
[17] Roy D., Gupta R. P.: Stochastic modeling through reliability measures in the discrete case.Statist. Probab. Letters 43 (1999), 197–206 MR 1693301, 10.1016/S0167-7152(98)00260-0 |
Reference:
|
[18] Srivastava R. C.: Two characterizations of the geometric distribution.J. Amer. Statist. Assoc. 69 (1974), 267–269 Zbl 0311.60012, MR 0381074, 10.1080/01621459.1974.10480169 |
Reference:
|
[19] Xekalaki E.: Hazard function and life distributions in discrete time.Commun. Statist. – Theory and Methods 12 (1983), 2503–2509 MR 0715179, 10.1080/03610928308828617 |
. |