Title:
|
A categorical view at generalized concept lattices (English) |
Author:
|
Krajči, Stanislav |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
43 |
Issue:
|
2 |
Year:
|
2007 |
Pages:
|
255-264 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We continue in the direction of the ideas from the Zhang’s paper [Z] about a relationship between Chu spaces and Formal Concept Analysis. We modify this categorical point of view at a classical concept lattice to a generalized concept lattice (in the sense of Krajči [K1]): We define generalized Chu spaces and show that they together with (a special type of) their morphisms form a category. Moreover we define corresponding modifications of the image / inverse image operator and show their commutativity properties with mapping defining generalized concept lattice as fuzzifications of Zhang’s ones. (English) |
Keyword:
|
fuzzy concept lattice |
Keyword:
|
Chu space |
Keyword:
|
category theory |
MSC:
|
03G10 |
MSC:
|
06D72 |
MSC:
|
18D35 |
MSC:
|
68T30 |
idZBL:
|
Zbl 1132.06300 |
idMR:
|
MR2343400 |
. |
Date available:
|
2009-09-24T20:23:30Z |
Last updated:
|
2012-06-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135771 |
. |
Reference:
|
[1] Bělohlávek R.: Fuzzy concepts and conceptual structures: induced similarities.In: Proc. Joint Conference Inform. Sci. ’98, Durham (U.S.A.) 1998, Vol. I, pp. 179–182 |
Reference:
|
[2] Bělohlávek R.: Concept lattices and order in fuzzy logic.Ann. Pure Appl. Logic 128 (2004), 277–298 Zbl 1060.03040, MR 2060556 |
Reference:
|
[3] Bělohlávek R., Sklenář, V., Zacpal J.: Crisply generated fuzzy concepts.In: ICFCA 2005 (B. Ganter and R. Godin, eds., Lecture Notes in Computer Science 3403), Springer–Verlag, Berlin – Heidelberg 2005, pp. 268–283 Zbl 1078.68142 |
Reference:
|
[4] Bělohlávek R., Vychodil V.: Reducing the size of fuzzy concept lattices by hedges.In: Proc. FUZZ–IEEE 2005, The IEEE Internat. Conference Fuzzy Systems, Reno 2005, pp. 663–668 |
Reference:
|
[5] Yahia S. Ben, Jaoua A.: Discovering knowledge from fuzzy concept lattice.In: Data Mining and Computational Intelligence (A. Kandel, M. Last, and H. Bunke, eds.), Physica–Verlag, Heidelberg 2001, pp. 169–190 |
Reference:
|
[6] Ganter B., Wille R.: Formal Concept Analysis, Mathematical Foundation.Springer–Verlag, Berlin 1999 MR 1707295 |
Reference:
|
[7] Krajči S.: A generalized concept lattice.Logic J. of the IGPL 13 (2005), 5, 543–550 Zbl 1088.06005, MR 2187880 |
Reference:
|
[8] Krajči S.: The basic theorem on generalized concept lattice.In: Proc. 2nd Internat. Workshop CLA 2004 (V. Snášel and R. Bělohlávek, eds.), Ostrava 2004, pp. 25–33 |
Reference:
|
[9] Krajči S.: Every concept lattice with hedges is isomorphic to some generalized concept lattice.In: Proc. 3nd Internat. Workshop CLA 2004 (R. Bělohlávek and V. Snášel, eds.), Olomouc 2005, pp. 1–9 |
Reference:
|
[10] Krajči S.: Cluster based efficient generation of fuzzy concepts.Neural Network World 13 (2003), 5, 521–530 |
Reference:
|
[11] Pollandt S.: Fuzzy Begriffe.Springer–Verlag, Berlin 1997 Zbl 0870.06008, MR 1710383 |
Reference:
|
[12] Pollandt S.: Datenanalyse mit Fuzzy–Begriffen.In: Begriffliche Wissensverarbeitung, Methoden und Anwendungen (G. Stumme and R. Wille, eds.), Springer–Verlag, Heidelberg 2000, pp. 72–98 Zbl 0958.68162 |
Reference:
|
[13] Shostak A.: Fuzzy categories versus categories of fuzzily structured sets: Elements of the theory of fuzzy categories.In: Mathematik–Arbeitspapiere N 48: Categorical Methods in Algebra and Topology (A collection of papers in honor of Horst Herrlich, Hans-E. Porst, ed.), Bremen 1977, pp. 407–438 |
Reference:
|
[14] Zhang G. Q.: Chu spaces, concept lattices, and domains.In: Proc. Nineteenth Conference on the Mathematical Foundations of Programming Semantics, Montreal 2003, Electronic Notes in Theoretical Computer Science 83, 2004 |
. |