Previous |  Up |  Next

Article

Title: Automata with two-sided pushdowns defined over free groups generated by reduced alphabets (English)
Author: Blatný, Petr
Author: Bidlo, Radek
Author: Meduna, Alexander
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 3
Year: 2007
Pages: 265-278
Summary lang: English
.
Category: math
.
Summary: This paper introduces and discusses a modification of pushdown automata. This modification is based on two-sided pushdowns into which symbols are pushed from both ends. These pushdowns are defined over free groups, not free monoids, and they can be shortened only by the standard group reduction. We demonstrate that these automata characterize the family of recursively enumerable languages even if the free groups are generated by no more than four symbols. (English)
Keyword: pushdown automata
Keyword: modifications
Keyword: recursively enumerable languages
MSC: 68Q05
MSC: 68Q45
idZBL: Zbl 1135.68027
idMR: MR2362718
.
Date available: 2009-09-24T20:23:41Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135773
.
Reference: [1] Jacobson N.: Basic Algebra.Second edition. W. H. Freeman, New York 1989 Zbl 0694.16001, MR 1009787
Reference: [2] Kleijn H. C. M., Rozenberg G.: On the generative power of regular pattern grammars.Acta Informatica 20 (1983), 391–411 Zbl 0541.68048, MR 0732313
Reference: [3] Aho A. V., Ullman J. D.: The Theory of Parsing, Translation and Compiling.Volume I: Parsing. Prentice Hall, Englewood Cliffs, NJ 1972 MR 0408321
Reference: [4] Autebert J., Berstel, J., Boasson L.: Context-Free Languages and Pushdown Automata.In: Handbook of Formal Languages (G. Rozenberg, and A. Salomaa, eds.), Springer, Berlin 1997 MR 1469995
Reference: [5] Courcelle B.: On jump deterministic pushdown automata.Math. Systems Theory 11 (1977), 87–109 Zbl 0365.02021, MR 0464717
Reference: [6] Greibach S. A.: Checking automata and one-way stack languages.J. Comput. Systems Sci. 3 (1969), 196–217 Zbl 0174.02702, MR 0243953
Reference: [7] Ginsburg S., Greibach S. A., Harrison M. A.: One-way stack automata.J. Assoc. Comput. Mach. 14 (1967), 389–418 Zbl 0171.14803, MR 0243944
Reference: [8] Ginsburg S., Spanier E.: Finite-turn pushdown automata.SIAM J. Control 4 (1968), 429–453 MR 0204294
Reference: [10] Holzer M., Kutrib M.: Flip-pushdown automata: $k+1$ pushdown reversals are better than $k$.In: Languages and Programming – ICALP 2003 (Lecture Notes in Computer Science 2719), Springer, Berlin 2003, pp. 490–501 Zbl 1039.68066, MR 2080723
Reference: [11] Lewis H. R., Papadimitriou C. H.: Elements of the Theory of Computation.Prentice-Hall, Englewood Cliffs, NJ 1981 Zbl 0464.68001
Reference: [12] Martin J. C.: Introduction to Languages and the Theory of Computation.McGraw-Hill, New York 1991 Zbl 0905.68085
Reference: [13] Meduna A.: Automata and Languages: Theory and Applications.Springer, London 2000 Zbl 0951.68056, MR 1778364
Reference: [14] Meduna A.: Simultaneously one-turn two-pushdown automata.Internat. Computer Math. 82 (2003), 679–687 Zbl 1103.68587, MR 1984796
Reference: [15] Meduna A., Kolář D.: Regulated pushdown automata.Acta Cybernet. 14 (2000), 653–664 Zbl 1011.68049, MR 1790232
Reference: [16] Sakarovitch J.: Pushdown automata with terminating languages.In: Languages and Automata Symposium, RIMS 421 (1981), 15–29
Reference: [17] Sarkar P.: Pushdown automaton with the ability to flip its stack.TR01-081, Electronic Colloquium on Computational Complexity (ECCC), November 2001
Reference: [18] Sudkamp T. A.: Languages and Machines.Addison Wesley, Reading, Mass. 1988
Reference: [19] Valiant L.: The equivalence problem for ceterministic finite turn pushdown automata.Inform. and Control 81 (1989), 265–279
.

Files

Files Size Format View
Kybernetika_43-2007-3_1.pdf 707.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo