[1] Agresti A.:
Categorical Data Analysis. Wiley, New York 2002
MR 1914507
[2] Allison P. D.:
A simple proof of the Spearman–Brown formula for continuous test lengths. Psychometrika 40 (1975), 135–136
MR 0488586
[3] Bravo G., Potvin L.: Estimating the reliability of continuous measures with Cronbach’s alpha or the intraclass correlation coefficient: Toward the integration of two traditions. J. Clin. Epidemiol. 44 (1991), 381–390
[4] Christmann A., Aelst S. Van:
Robust estimation of Cronbach’s alpha. J. Multivariate Anal. 97 (2006), 1660–1674
MR 2256235
[5] Commenges D., Jacqmin H.:
The intraclass correlation coefficient distribution-free definition and test. Biometrics 50 (1994), 517–526
Zbl 0821.62029
[6] Cronbach L. J.: Coefficient alpha and the internal structure of tests. Psychometrika 16 (1951), 297–334
[7] Feldt L. S.: The approximate sampling distribution of Kuder–Richardson reliability coefficient twenty. Psychometrika 30 (1965), 357–370
[8] Guttman L. A.:
A basis for analyzing test-retest reliability. Psychometrika 30 (1945), 357–370
MR 0014672 |
Zbl 0060.30902
[9] Richardson G. Kuder, M.: The theory of estimation of test reliability. Psychometrika 2 (1937), 151–160
[10] Neter J., Wasserman, W., Kutner M. H.: Applied Linear Statistical Models. Richard D. Irwin, Homewood, Il. 1985
[11] Novick M. R., Lewis C.: Coefficient alpha and the reliability of composite measurement. Psychometrika 32 (1967), 1–13
[12] Rasch G.: Probabilistic Models for Some Intelligence and Attainment Tests. The Danish Institute of Educational Research, Copenhagen 1960
[13] Berge J. M. F. ten, Zegers F. E.:
A series of lower bounds to the reliability of a test. Psychometrika 43 (1978), 575–579
MR 0521905
[14] Wilcox R. R.: Robust generalizations of classical test reliability and Cronbach’s alpha. British J. Math. Statist. Psych. 45 (1992), 239–254
[15] Zvára K.: Measuring of reliability: Beware of Cronbach. (Měření reliability aneb bacha na Cronbacha, in Czech.) Inform. Bull. Czech Statist. Soc. 12 (2002), 13–20