[1] Chang C. C.: 
Algebraic analysis of many-valued logics. Trans. Amer. Math. Math. Soc. 88 (1958), 467–490 
MR 0094302 | 
Zbl 0084.00704[2] Dvurečenskij A., Pulmannová S.: 
New Trends in Quantum Structures Theory. Kluwer Academic Publications, Dordrecht 2000 
MR 1861369[3] Foulis D. J., Bennett M. K.: 
Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346 
MR 1304942[4] Greechie R. J., Foulis, D., Pulmannová S.: 
The center of an effect algebra. Order 12 (1995), 91–106 
MR 1336539 | 
Zbl 0846.03031[5] Jenča G., Riečanová Z.: On sharp elements in lattice effect algebras. BUSEFAL 80 (1999), 24–29
[7] Kôpka F., Chovanec F.: 
D-posets. Math. Slovaca 44 (1994), 21–34 
MR 1290269[8] Riečanová Z.: 
Continuous lattice effect algebras admitting order-continuous states. Fuzzy Sets and Systems 136 (2003), 41–54 
MR 1978468[9] Riečanová Z.: 
Archimedean atomic lattice effect algebras in which all sharp elements are central. Kybernetika 42 (2006), 2, 143–150 
MR 2241781[10] Riečanová Z., Marinová, I., Zajac M.: Some aspects of generalized prelattice effect algebras. In: Theory and Application of Relational Structures as Knowledge Instruments II (H. de Swart et al., eds., Lecture Notes in Artificial Intelligence 4342), Springer–Verlag, Berlin 2006, pp. 290–317