Previous |  Up |  Next

Article

Title: On some contributions to quantum structures by fuzzy sets (English)
Author: Riečan, Beloslav
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 4
Year: 2007
Pages: 481-490
Summary lang: English
.
Category: math
.
Summary: It is well known that the fuzzy sets theory can be successfully used in quantum models ([5, 26]). In this paper we give first a review of recent development in the probability theory on tribes and their generalizations – multivalued (MV)-algebras. Secondly we show some applications of the described method to develop probability theory on IF-events. (English)
Keyword: probability
Keyword: fuzzy sets
Keyword: MV-algebra
Keyword: IF events
MSC: 03B50
MSC: 03G12
MSC: 06D35
MSC: 28E10
MSC: 60A05
MSC: 60B99
idZBL: Zbl 1139.06004
idMR: MR2377926
.
Date available: 2009-09-24T20:26:00Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135790
.
Reference: [1] Atanassov K.: Intuitionistic Fuzzy Sets: Theory and Applications.Physica–Verlag, New York 1999 Zbl 0939.03057, MR 1718470
Reference: [2] Cignoli L. O., D’Ottaviano M. L., Mundici D.: Algebraic Foundations of Many–valued Reasoning.Kluwer, Dordrecht 2000 Zbl 0937.06009
Reference: [3] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy of effect algebras with the Riesz decomposition property I: Basic properties.Kybernetika 41 (2005), 143–160 MR 2138765
Reference: [4] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy of effect algebras with the Riesz decomposition property II: MV-algebras.Kybernetika 41 (2005), 161–176 MR 2138766
Reference: [5] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures.Kluwer, Dordrecht 2000 MR 1861369
Reference: [6] Gerstenkorn T., Manko J.: Probabilities of intuitionistic fuzzy events.In: Issues in Intelligent Systems: Paradigms (O. Hryniewicz et al., eds.). EXIT, Warszawa, pp. 63–58
Reference: [7] Grzegorzewski P., Mrowka E.: Probability of intuitionistic fuzzy events.In: Soft Methods in Probability, Statistics and Data Analysis (P. Grzegorzewski et al., eds.). Physica–Verlag, New York 2002, pp. 105–115 MR 1987681
Reference: [8] Halmos P. R.: Measure Theory.Van Nostrand, New York 1950 Zbl 0283.28001, MR 0033869
Reference: [9] Kolmogorov A. N.: Foundations of the Theory of Probability.Chelsea Press, New York 1950 (German original appeared in 1933) MR 0032961
Reference: [10] Lendelová K.: Measure Theory on Multivalued Logics and its Applications.Ph.D. Thesis. M. Bel University, Banská Bystrica 2005
Reference: [11] Lendelová K.: Probability on L-posets.In: Proc. Fourth Conference of the European Society for Fuzzy Logic and Technology and 11 Rencontres Francophones sur la Logique Floue et ses Applications (EUSFLAT-LFA 2005 Joint Conference), Technical University of Catalonia, Barcelona, pp. 320–324
Reference: [12] Lendelová K.: A note on invariant observables.Internat. J. Theoret. Physics 45 (2006), 915–923 Zbl 1105.81008, MR 2245606
Reference: [13] Lendelová K.: Central Limit Theorem for L-posets.J. Electr. Engrg. 12/S (2005), 56, 7–9 Zbl 1096.60015
Reference: [14] Montagna F.: An algebraic approach to propositional fuzzy logic.J. Logic. Lang. Inf. 9 (2000), 91–124 Zbl 0942.06006, MR 1749775
Reference: [15] Neumann J. von: Grundlagen der Quantenmechanik.Berlin 1932
Reference: [16] Riečan B.: A new approach to some notions of statistical quantum mechanics.BUSEFAL 36 (1988), 4–6
Reference: [17] Riečan B.: On the product MV-algebras.Tatra Mt. Math. Publ. 16 (1999), 143–149 Zbl 0951.06013, MR 1725292
Reference: [18] Riečan B.: Representation of probabilities on IFS events.In: Advances in Soft Computing, Soft Methodology and Random Information Systems (M. Lopez–Diaz et al., eds.) Springer–Verlag, Berlin 2004, pp. 243–246 Zbl 1061.03058, MR 2118103
Reference: [19] Riečan B.: Free products of probability MV-algebras.Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 173–186 Zbl 1072.06007, MR 1910785
Reference: [20] Riečan B.: The conjugacy of probability MV-$\sigma $-algebras with the unit interval.Atti Sem. Mat. Fis. Univ. Modena 52 (2004), 241–248 Zbl 1115.28018, MR 2152490
Reference: [21] Riečan B.: Kolmogorov–Sinaj entropy on MV-algebras.Internat. J. Theoret. Physics 44 (2005), 1041–1052 Zbl 1119.81302, MR 2199519
Reference: [22] Riečan B.: On the probability on IF-sets and MV-algebras.Notes on IFS 11 (2005), 6, 21–25
Reference: [23] Riečan B.: On the probability and random variables on IF events.In: Applied Artificial Intelligence (Proc. 7th FLINS Conf. Genova, Da Ruan et al., eds.), World Scientific 2006, pp. 138–145
Reference: [24] Riečan B., Jurečková M.: On invariant observables and the individual ergodic theorem.Internat. J. Theoret. Physics 44 (2005), 1587–1597 MR 2198158
Reference: [25] Riečan B., Mundici D.: Probability on MV-algebras.In: Handbook on Measure Theory (E. Pap, ed.), Elsevier, Amsterdam 2002 Zbl 1017.28002, MR 1954631
Reference: [26] Riečan B., Neubrunn T.: Integral, Measure, and Ordering.Kluwer, Dordrecht 1997 Zbl 0916.28001, MR 1489521
Reference: [27] Schmidt E., Kacprzyk J.: Probability of intuitionistic fuzzy events and their applications in decision making.In: Proc. EUSFLAT’99, Palma de Mallorca 1999, pp. 457–460
.

Files

Files Size Format View
Kybernetika_43-2007-4_9.pdf 652.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo