Previous |  Up |  Next

Article

Title: Computational technique for treating the nonlinear Black-Scholes equation with the effect of transaction costs (English)
Author: Imai, Hitoshi
Author: Ishimura, Naoyuki
Author: Sakaguchi, Hideo
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 6
Year: 2007
Pages: 807-815
Summary lang: English
.
Category: math
.
Summary: We deal with numerical computation of the nonlinear partial differential equations (PDEs) of Black–Scholes type which incorporate the effect of transaction costs. Our proposed technique surmounts the difficulty of infinite domains and unbounded values of the solutions. Numerical implementation shows the validity of our scheme. (English)
Keyword: transaction costs
Keyword: nonlinear partial differential equation
Keyword: numerical computation
MSC: 35K15
MSC: 65M99
MSC: 91B28
idZBL: Zbl 1213.91160
idMR: MR2388395
.
Date available: 2009-09-24T20:29:46Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/135817
.
Reference: [1] Black F., Scholes M.: The pricing of options and corporate liabilities.J. Political Economy 81 (1973), 637–659 Zbl 1092.91524, 10.1086/260062
Reference: [2] Boyle P. P., Vorst T.: Option replication in discrete time with transaction costs.J. Finance 47 (1992), 271–293 10.1111/j.1540-6261.1992.tb03986.x
Reference: [3] Dewynne J. N., Whalley A. E., Wilmott P.: Path-dependent options and transaction costs.In: Mathematical Models in Finance (S. D. Howison, F. P. Kelly, and P. Wilmott, eds.), Chapman and Hall, London 1995, pp. 67–79 Zbl 0854.90009
Reference: [4] Hoggard T., Whalley A. E., Wilmott P.: Hedging option portfolios in the presence of transaction costs.Adv. in Futures and Options Res. 7 (1994), 21–35
Reference: [5] Hull J.: Options, Futures, and Other Derivatives.Fourth edition. Prentice-Hall, New Jersey 2000 Zbl 1087.91025
Reference: [6] Imai H.: Some methods for removing singularities and infinity in numerical simulations.In: Proc. Third Polish–Japanese Days on Mathematical Approach to Nonlinear Phenomena: Modeling, Analysis and Simulations (T. Aiki, N. Kenmochi, M. Niezgódka and M. Ôtani, eds.), Gakuto, Tokyo 2005, pp. 103–118 MR 2232832
Reference: [7] Imai H., Ishimura N., Mottate, I., Nakamura M. A.: On the Hoggard–Whalley–Wilmott equation for the pricing of options with transaction costs.Asia–Pacific Financial Markets 13 (2007), 315–326 10.1007/s10690-007-9047-8
Reference: [8] Ishimura N.: Remarks on the nonlinear partial differential equations of Black–Scholes type with transaction costs.preprint. Submitted
Reference: [9] Jandačka M., Ševčovič D.: On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile.J. Appl. Math. 3 (2005), 235–258 Zbl 1128.91025, MR 2201973, 10.1155/JAM.2005.235
Reference: [10] Kwok Y.: Mathematical Models of Financial Derivatives.Springer, New York 1998 Zbl 1146.91002, MR 1645143
Reference: [11] Leland H. E.: Option pricing and replication with transaction costs.J. Finance 40 (1985), 1283–1301 10.1111/j.1540-6261.1985.tb02383.x
Reference: [12] Merton R. C.: Theory of rational option pricing.Bell J. Econ. Manag. Sci. 4 (1973), 141–183 MR 0496534, 10.2307/3003143
Reference: [13] Wilmott P.: Paul Wilmott on Quantitative Finance, Vol.I, II. Wiley, New York 2000
Reference: [14] Wilmott P., Howison, S., Dewynne J.: The Mathematics of Financial Derivatives.Cambridge University Press, Cambridge 1995 Zbl 0842.90008, MR 1357666
.

Files

Files Size Format View
Kybernetika_43-2007-6_6.pdf 699.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo