[1] Ash R.: 
Real Analysis and Probability. Probability and Mathematical Statistics. Academic Press, Berlin 1972 
MR 0435320[2] Birge J., Louveaux F.: 
Introduction to Stochastic Programming. Springer-Verlag, New York 1997 
MR 1460264 | 
Zbl 1223.90001[3] Birge J., Wets R.-B.: 
Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse. Math. Programming Stud.  27 (1986), 54–102 
MR 0836751 | 
Zbl 0603.90104[4] Dokov S. P., Morton D. P.: 
Second-order lower bounds on the expectation of a convex function. Math. Oper. Res. 30 (2005), 3, 662–677 
MR 2161203 | 
Zbl 1082.90077[5] Dupačová J.: Stochastic programming: Minimax approach. In: Encyclopedia of Optimization (C. Floudas and P. Pardalos, eds.), vol. 5, Kluwer 2001, pp. 327–330
[6] Žáčková) J. Dupačová (as: 
On minimax solutions of stochastic linear programming problems. Časopis pro pěstování matematiky 91 (1966), 423–429 
MR 0216864[7] Edirisinghe N., Ziemba W.: 
Bounding the expectation of a saddle function with application to stochastic programming. Math. Oper. Res. 19 (1994), 314–340 
MR 1290503 | 
Zbl 0824.90101[8] Fleten S.-E., Høyland, K., Wallace S. W.: 
The performance of stochastic dynamic and fixed mix portfolio models. European J. Oper. Res. 140 (2002), 1, 37–49 
MR 1894084[9] Frauendorfer K.: 
Multistage stochastic programming: Error analysis for the convex case. Z. Oper. Res. 39 (1994), 1, 93–122 
MR 1268638 | 
Zbl 0810.90098[10] Frauendorfer K.: 
Barycentric scenario trees in convex multistage stochastic programming. Math. Programming 75 (1996), 2, 277–294 
MR 1426642 | 
Zbl 0874.90144[11] Garstka S. J., Wets R. J.-B.: 
On decision rules in stochastic programming. Math. Programming 7 (1974), 117–143 
MR 0351451 | 
Zbl 0326.90049[12] Haneveld W. K., Vlerk M. van der: 
Integrated chance constraints: Reduced forms and an algorithm. Comput. Manag. Sci. 3 (2006), 2, 245–269 
MR 2253949[13] Heitsch H., Römisch, W., Strugarek C.: 
Stability of multistage stochastic programs. SIAM J. Optim. 17 (2006), 511–525 
MR 2247749 | 
Zbl 1165.90582[14] Hochreiter R., Pflug, G.: 
Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Ann. Oper. Res. 156 (2007), 1, 257–272 
MR 2303133 | 
Zbl 1144.90442[15] Høyland K., Wallace S.: Generating scenario trees for multistage decision problems. Management Sci. 47 (2001), 2, 295–307
[16] Infanger G.: 
Planning under Uncertainty: Solving Large-Scale Stochastic Linear Programs. Boyd and Fraser, Danvers 1994 
Zbl 0867.90086[17] Kaňková V., Šmíd M.: 
On approximation in multistage stochastic programs: Markov dependence. Kybernetika 40 (2004), 5, 625–638 
MR 2121001[18] Kleywegt A. J., Shapiro, A., Homem-de-Mello T.: 
The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12 (2002), 2, 479–502 
MR 1885572 | 
Zbl 0991.90090[19] Koivu M.: 
Variance reduction in sample approximations of stochastic programs. Math. Programming, Ser. A 103 (2005), 3, 463–485 
MR 2166545 | 
Zbl 1099.90036[20] Kouwenberg R.: 
Scenario generation and stochastic programming models for asset and liability management. European J. Oper. Res. 134 (2001), 2, 279–292 
MR 1853618[21] Kuhn D.: 
Aggregation and discretization in multistage stochastic programming. Math. Programming, Ser. A 113 (2008), 1, 61–94 
MR 2367066 | 
Zbl 1135.90032[22] Kuhn D.: 
Convergent bounds for stochastic programs with expected value constraints. The Stochastic Programming E-Print Series (SPEPS), 2007 
Zbl 1175.90304[23] Kuhn D., Parpas, P., Rustem B.: 
Threshold accepting approach to improve bound-based approximations for portfolio optimization. In: Computational Methods in Financial Engineering (E. Kontoghiorghes, B. Rustem, and P. Winker, eds.), Springer–Verlag, Berlin 2008, pp. 3–26 
Zbl 1142.91535[24] Mirkov R., Pflug G.: 
Tree approximations of dynamic stochastic programs. SIAM J. Optim. 18 (2007), 3, 1082–1105 
MR 2345985 | 
Zbl 1211.90150[25] Pennanen T.: 
Epi-convergent discretizations of multistage stochastic programs via integration quadratures. Math. Programming, to appear 
MR 2421289 | 
Zbl 1165.90014[26] Pflug G.: 
Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Programming, Ser. B 89 (2001), 251–271 
MR 1816503[27] Rachev S., Römisch W.: 
Quantitative stability in stochastic programming: the method of probability metrics. Math. Oper. Res. 27 (2002), 792–818 
MR 1939178 | 
Zbl 1082.90080[28] Rockafellar R. T., Uryasev S.: Optimization of conditional value-at-risk. J. Risk 2 (2000) 3, 21–41
[29] Shapiro A., Nemirovski A.: 
On complexity of stochastic programming problems. In: Continuous Optimization: Current Trends and Applications 2005 (V. Jeyakumar and A. Rubinov, eds.), Springer-Verlag, Berlin 2006, pp. 111–144 
MR 2166475 | 
Zbl 1115.90041[30] Thénié J., Vial J.-P.: Step decision rules for multistage stochastic programming: a heuristic approach. Optimization Online, 2006
[31] Wright S.: 
Primal-dual aggregation and disaggregation for stochastic linear programs. Math. Oper. Res. 19 (1994), 4, 893–908 
MR 1304629 | 
Zbl 0821.90086