Title:
|
Stability of stochastic optimization problems - nonmeasurable case (English) |
Author:
|
Lachout, Petr |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
44 |
Issue:
|
2 |
Year:
|
2008 |
Pages:
|
259-276 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper deals with stability of stochastic optimization problems in a general setting. Objective function is defined on a metric space and depends on a probability measure which is unknown, but, estimated from empirical observations. We try to derive stability results without precise knowledge of problem structure and without measurability assumption. Moreover, $\varepsilon $-optimal solutions are considered. The setup is illustrated on consistency of a $\varepsilon $-$M$-estimator in linear regression model. (English) |
Keyword:
|
stability of stochastic optimization problem |
Keyword:
|
weak convergence of probability measures |
Keyword:
|
estimator consistency |
Keyword:
|
metric spaces |
MSC:
|
60B05 |
MSC:
|
62F10 |
MSC:
|
62J05 |
MSC:
|
90C15 |
MSC:
|
90C31 |
idZBL:
|
Zbl 1154.90559 |
idMR:
|
MR2428223 |
. |
Date available:
|
2009-09-24T20:33:58Z |
Last updated:
|
2012-06-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135847 |
. |
Reference:
|
[1] Chen X. R., Wu Y. H.: Strong consistency of $M$-estimates in linear model.J. Multivariate Anal. 27 (1988), 1, 116–130 MR 0971177 |
Reference:
|
[2] Dodge Y., Jurečková J.: Adaptive Regression.Springer-Verlag, New York 2000 Zbl 0943.62063, MR 1932533 |
Reference:
|
[3] Dupačová J.: Stability and sensitivity analysis for stochastic programming.Ann. Oper. Res. 27 (1990), 115–142 MR 1088990 |
Reference:
|
[4] Dupačová J., Wets R. J.-B.: Asymptotic behavior of statistical estimators and of optimal solutions of stochastic problems.Ann. Statist. 16 (1988), 4, 1517–1549 MR 0964937 |
Reference:
|
[5] Hoffmann-Jørgensen J.: Probability with a View Towards to Statistics I, II.Chapman and Hall, New York 1994 |
Reference:
|
[6] Huber P. J.: Robust Statistics.Wiley, New York 1981 MR 0606374 |
Reference:
|
[7] Jurečková J.: Asymptotic representation of M-estimators of location.Math. Oper. Statist. Sec. Statist. 11 (1980), 1, 61–73 MR 0606159 |
Reference:
|
[8] Jurečková J.: Representation of M-estimators with the second-order asymptotic distribution.Statist. Decision 3 (1985), 263–276 Zbl 0583.62014, MR 0809364 |
Reference:
|
[9] Jurečková J., Sen P. K.: Robust Statistical Procedures.Wiley, New York 1996 Zbl 0862.62032, MR 1387346 |
Reference:
|
[10] King A. J., Rockafellar T.: Asymptotic theory for solutions in statistical estimation and stochastic programming.Math. Oper. Res. 18 (1993), 148–162 Zbl 0798.90115, MR 1250111 |
Reference:
|
[11] Kelley J. L.: General Topology.D. van Nostrand, New York 1955 Zbl 0518.54001, MR 0070144 |
Reference:
|
[12] Knight K.: Limiting distributions for $L_{1}$-regression estimators under general conditions.Ann. Statist. 26 (1998), 2, 755–770 Zbl 0929.62021, MR 1626024 |
Reference:
|
[13] Lachout P.: Stochastic optimization sensitivity without measurability.In: Proc. 15th Internat. Conference on Mathematical Methods in Economics and Industry (K. Cechlárová, M. Halická, V. Borbełová, V. Lacko, eds.), Herłany, Slovakia, June 2007, pp. 131–136 |
Reference:
|
[14] Lachout P., Liebscher E., Vogel S.: Strong convergence of estimators as $\varepsilon _n$-minimizers of optimization problems.Ann. Inst. Statist. Math. 57 (2005), 2, 291–313 MR 2160652 |
Reference:
|
[15] Lachout P., Vogel S.: On continuous convergence and epi-convergence of random functions.Part I: Theory and relations. Kybernetika 39 (2003), 1, 75–98 MR 1980125 |
Reference:
|
[16] Leroy A. M., Rousseeuw P. J.: Robust Regression and Outlier Detection.Wiley, New York 1987 Zbl 0711.62030, MR 0914792 |
Reference:
|
[17] Robinson S. M.: Analysis of sample-path optimization.Math. Oper. Res. 21 (1996), 3, 513–528 Zbl 0868.90087, MR 1403302 |
Reference:
|
[18] Rockafellar T., Wets R. J.-B.: Variational Analysis.Springer-Verlag, Berlin 1998 Zbl 0888.49001, MR 1491362 |
Reference:
|
[19] Schultz R.: Some aspects of stability in stochastic programming.Ann. Oper. Research 100 (1996), 55–84 MR 1843535 |
Reference:
|
[20] Vaart A. W. van der, Wellner J. A.: Weak Convergence and Empirical Processes.Springer, New York 1996 MR 1385671 |
Reference:
|
[21] Wang L., Wang J.: Limit distribution of statistical estimators for stochastic programs with dependent samples.Z. Angew. Math. Mech. 79 (1999), 4, 257–266 Zbl 0933.90050, MR 1680709 |
Reference:
|
[22] Vajda I., Janžura M.: On asymptotically optimal estimates for general observations.Stochastic Proc. Appl. 72 (1997), 1, 27–45 Zbl 0933.62081, MR 1483610 |
Reference:
|
[23] Ruszczyński A., (eds.) A. Shapiro: Stochastic Programming.Elsevier, Amsterdam 2003 Zbl 1183.90005, MR 2051791 |
. |