Previous |  Up |  Next

Article

Title: Stability of stochastic optimization problems - nonmeasurable case (English)
Author: Lachout, Petr
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 2
Year: 2008
Pages: 259-276
Summary lang: English
.
Category: math
.
Summary: This paper deals with stability of stochastic optimization problems in a general setting. Objective function is defined on a metric space and depends on a probability measure which is unknown, but, estimated from empirical observations. We try to derive stability results without precise knowledge of problem structure and without measurability assumption. Moreover, $\varepsilon $-optimal solutions are considered. The setup is illustrated on consistency of a $\varepsilon $-$M$-estimator in linear regression model. (English)
Keyword: stability of stochastic optimization problem
Keyword: weak convergence of probability measures
Keyword: estimator consistency
Keyword: metric spaces
MSC: 60B05
MSC: 62F10
MSC: 62J05
MSC: 90C15
MSC: 90C31
idZBL: Zbl 1154.90559
idMR: MR2428223
.
Date available: 2009-09-24T20:33:58Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135847
.
Reference: [1] Chen X. R., Wu Y. H.: Strong consistency of $M$-estimates in linear model.J. Multivariate Anal. 27 (1988), 1, 116–130 MR 0971177
Reference: [2] Dodge Y., Jurečková J.: Adaptive Regression.Springer-Verlag, New York 2000 Zbl 0943.62063, MR 1932533
Reference: [3] Dupačová J.: Stability and sensitivity analysis for stochastic programming.Ann. Oper. Res. 27 (1990), 115–142 MR 1088990
Reference: [4] Dupačová J., Wets R. J.-B.: Asymptotic behavior of statistical estimators and of optimal solutions of stochastic problems.Ann. Statist. 16 (1988), 4, 1517–1549 MR 0964937
Reference: [5] Hoffmann-Jørgensen J.: Probability with a View Towards to Statistics I, II.Chapman and Hall, New York 1994
Reference: [6] Huber P. J.: Robust Statistics.Wiley, New York 1981 MR 0606374
Reference: [7] Jurečková J.: Asymptotic representation of M-estimators of location.Math. Oper. Statist. Sec. Statist. 11 (1980), 1, 61–73 MR 0606159
Reference: [8] Jurečková J.: Representation of M-estimators with the second-order asymptotic distribution.Statist. Decision 3 (1985), 263–276 Zbl 0583.62014, MR 0809364
Reference: [9] Jurečková J., Sen P. K.: Robust Statistical Procedures.Wiley, New York 1996 Zbl 0862.62032, MR 1387346
Reference: [10] King A. J., Rockafellar T.: Asymptotic theory for solutions in statistical estimation and stochastic programming.Math. Oper. Res. 18 (1993), 148–162 Zbl 0798.90115, MR 1250111
Reference: [11] Kelley J. L.: General Topology.D. van Nostrand, New York 1955 Zbl 0518.54001, MR 0070144
Reference: [12] Knight K.: Limiting distributions for $L_{1}$-regression estimators under general conditions.Ann. Statist. 26 (1998), 2, 755–770 Zbl 0929.62021, MR 1626024
Reference: [13] Lachout P.: Stochastic optimization sensitivity without measurability.In: Proc. 15th Internat. Conference on Mathematical Methods in Economics and Industry (K. Cechlárová, M. Halická, V. Borbełová, V. Lacko, eds.), Herłany, Slovakia, June 2007, pp. 131–136
Reference: [14] Lachout P., Liebscher E., Vogel S.: Strong convergence of estimators as $\varepsilon _n$-minimizers of optimization problems.Ann. Inst. Statist. Math. 57 (2005), 2, 291–313 MR 2160652
Reference: [15] Lachout P., Vogel S.: On continuous convergence and epi-convergence of random functions.Part I: Theory and relations. Kybernetika 39 (2003), 1, 75–98 MR 1980125
Reference: [16] Leroy A. M., Rousseeuw P. J.: Robust Regression and Outlier Detection.Wiley, New York 1987 Zbl 0711.62030, MR 0914792
Reference: [17] Robinson S. M.: Analysis of sample-path optimization.Math. Oper. Res. 21 (1996), 3, 513–528 Zbl 0868.90087, MR 1403302
Reference: [18] Rockafellar T., Wets R. J.-B.: Variational Analysis.Springer-Verlag, Berlin 1998 Zbl 0888.49001, MR 1491362
Reference: [19] Schultz R.: Some aspects of stability in stochastic programming.Ann. Oper. Research 100 (1996), 55–84 MR 1843535
Reference: [20] Vaart A. W. van der, Wellner J. A.: Weak Convergence and Empirical Processes.Springer, New York 1996 MR 1385671
Reference: [21] Wang L., Wang J.: Limit distribution of statistical estimators for stochastic programs with dependent samples.Z. Angew. Math. Mech. 79 (1999), 4, 257–266 Zbl 0933.90050, MR 1680709
Reference: [22] Vajda I., Janžura M.: On asymptotically optimal estimates for general observations.Stochastic Proc. Appl. 72 (1997), 1, 27–45 Zbl 0933.62081, MR 1483610
Reference: [23] Ruszczyński A., (eds.) A. Shapiro: Stochastic Programming.Elsevier, Amsterdam 2003 Zbl 1183.90005, MR 2051791
.

Files

Files Size Format View
Kybernetika_44-2008-2_9.pdf 809.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo