Previous |  Up |  Next

Article

Title: External properness (English)
Author: Bonilla, Moisés
Author: Malabre, Michel
Author: Pacheco, Jaime
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 3
Year: 2008
Pages: 360-372
Summary lang: English
.
Category: math
.
Summary: In this paper, we revisit the structural concept of properness. We distinguish between the properness of the whole system, here called internal properness, and the properness of the “observable part” of the system. We give geometric characterizations for this last properness concept, namely external properness. (English)
Keyword: properness
Keyword: linear systems
Keyword: implicit systems
MSC: 93B27
MSC: 93C05
MSC: 93C35
idZBL: Zbl 1154.93329
idMR: MR2436037
.
Date available: 2009-09-24T20:35:09Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135856
.
Reference: [1] Aplevich J. D.: Time-domain input-output Representations of linear systems.Automatica 17 (1981), 3, 509–522 Zbl 0463.93031, MR 0628500
Reference: [2] Aplevich J. D.: Implicit Linear Systems.(Lecture Notes in Control and Information Sciences 152.) Springer–Verlag, Berlin 1991 Zbl 0764.93001, MR 1100921
Reference: [3] Armentano V. A.: The pencil $\left( sE-A\right)$ and controllability-observability for generalized linear systems: a geometric approach.SIAM J. Control Optim. 24 (1986), 4, 616–638 MR 0846371
Reference: [4] Bernhard P.: On singular implicit dynamical systems.SIAM J. Control Optim. 20 (1982), 5, 612–633 MR 0667644
Reference: [5] Bonilla M., Malabre M.: Geometric minimization under external equivalence for implicit descriptions.Automatica 31 (1995), 6, 897–901 Zbl 0831.93010, MR 1337338
Reference: [6] Bonilla M., Malabre M.: Structural matrix minimization algorithm for implicit descriptions.Automatica 33 (1997), 4, 705–710 Zbl 0913.93012, MR 1448965
Reference: [7] Bonilla M., Malabre, M., Fonseca M.: On the approximation of non–proper control laws.Internat. J. Control 68 (1997), 4, 775–796 Zbl 0897.93053, MR 1689656
Reference: [8] Bonilla M., Malabre M.: More about non square implicit descriptions for modelling and control.In: Proc. 39th IEEE Conference on Decision and Control 2000, pp. 3642–3647
Reference: [9] Bonilla M., Malabre M.: On the control of linear systems having internal variations.Automatica 39 (2003), 11, 1989–1996 MR 2142835
Reference: [10] Campbell S. L.: Singular Systems of Differential Equations II.Pitman, New York 1982 Zbl 0482.34008, MR 0665426
Reference: [11] Cobb D.: Controllability, Observability and Duality in Singular Systems.IEEE Trans. Automat. Control AC-29 (1984), 12, 1076–1082 MR 0771396
Reference: [12] Dai L.: Singular Control Systems.(Lecture Notes in Control and Information Sciences 118.) Springer–Verlag, Berlin 1989 Zbl 0669.93034, MR 0986970
Reference: [13] Frankowska H.: On the controllability and observability of implicit systems.Systems Control Lett. 14 (1990), 219–225 MR 1049356
Reference: [14] Gantmacher F. R.: The Theory of Matrices.Vol. II. Chelsea, New York 1977 Zbl 0927.15002
Reference: [15] Kučera V., Zagalak P.: Fundamental theorem of state feedback for singular systems.Automatica 24 (1988), 5, 653–658 MR 0966689
Reference: [16] Kuijper M.: First-order Representations of Linear Systems.Ph.D. Thesis. Katholieke Universiteit Brabant, Amsterdam 1992 Zbl 0863.93001
Reference: [17] Kuijper M.: Descriptor representations without direct feedthrough term.Automatica 28 (1992), 633–637 Zbl 0766.93026, MR 1166034
Reference: [18] Lewis F. L.: A survey of linear singular systems.Circuits Systems Signal Process. 5 (1986), 1, 3–36 Zbl 0613.93029, MR 0893725
Reference: [19] Lewis F. L.: A tutorial on the geometric analysis of linear time-invariant implicit systems.Automatica 28 (1992), 1, 119–137 Zbl 0745.93033, MR 1144115
Reference: [20] Loiseau J. J.: Some geometric considerations about the Kronecker normal form.Internat. J. Control 42 (1985), 6, 1411–1431 Zbl 0609.93014, MR 0818345
Reference: [21] Malabre M.: Generalized linear systems, geometric and structural approaches.Linear Algebra Appl. 122/123/124 (1989), 591–621 Zbl 0679.93048, MR 1020003
Reference: [22] Malabre M.: More geometry about singular systems.In: Proc. 26th IEEE Conference on Decision and Control 1987, pp. 1138–1139
Reference: [23] Özçaldiran K.: A geometric characterization of the reachable and controllable subspaces of descriptor systems.Circuits Systems Signal Process. 5 (1986), 1, 37–48 MR 0893726
Reference: [24] Pacheco P., Bonilla, M., Malabre M.: Proper exponential approximation of non proper compensators: The MIMO case.In: Proc. 42nd IEEE Conference on Decision and Control 2003, pp. 110–115
Reference: [25] Polderman J. W., Willems J. C.: Introduction to Mathematical Systems Theory: A Behavioral Approach.Springer–Verlag, New York 1998 Zbl 0940.93002, MR 1480665
Reference: [26] Rosenbrock H. H.: State-Space and Multivariable Theory.Nelson, London 1970 Zbl 0246.93010, MR 0325201
Reference: [27] Schwartz L.: Théorie des Distributions.Herman, Paris 1966 Zbl 0962.46025, MR 0209834
Reference: [28] Verghese G. C.: Further notes on singular descriptions.JACC TA4 (1981), Charlottesville
Reference: [29] Verghese G. C., Lévy B. C., Kailath T.: A generalized state-space for singular systems.IEEE Trans. Automat. Control 26 (1981), 4, 811–831 MR 0635842
Reference: [30] Willems J. C.: Input-output and state space representations of finite-dimensional linear time-invariant systems.Linear Algebra Appl. 50 (1983), 81–608 Zbl 0507.93017, MR 0699576
Reference: [31] Wong K. T.: The eigenvalue problem $\lambda Tx+Sx.$ J. Differential Equations 1 (1974), 270–281 Zbl 0327.15015, MR 0349711
Reference: [32] Zagalak P., Kučera V.: Fundamental theorem of state feedback: The case of infinite poles.Kybernetika 27 (1991), 1, 1–11 Zbl 0725.93049, MR 1099510
.

Files

Files Size Format View
Kybernetika_44-2008-3_7.pdf 1.156Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo