Previous |  Up |  Next

Article

Title: Synchronization with error bound of non-identical forced oscillators (English)
Author: Wang, Jiangen
Author: Cai, Jianping
Author: Ma, Mihua
Author: Feng, Jiuchao
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 4
Year: 2008
Pages: 534-545
Summary lang: English
.
Category: math
.
Summary: Synchronization with error bound of two non-identical forced oscillators is studied in the paper. By introducing two auxiliary autonomous systems, differential inequality technique and active control technique are used to deal with the synchronization of two non-identical forced oscillators with parameter mismatch in external harmonic excitations. Numerical simulations show the effectiveness of the proposed method. (English)
Keyword: chaotic synchronization with error bound
Keyword: non-identical forced oscillator
Keyword: differential inequality
Keyword: active control
MSC: 34C15
MSC: 37D45
MSC: 70K40
MSC: 70K55
MSC: 70Q05
MSC: 74H65
idZBL: Zbl 1173.70009
idMR: MR2459071
.
Date available: 2009-09-24T20:37:47Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135872
.
Reference: [1] Bai E. W., Lonngren K. E.: Sequential synchronization of two Lorenz systems using active control.Chaos, Solitons and Fractals 11 (2000), 1041–1044 Zbl 0985.37106
Reference: [2] Cai J. P., Wu X. F., Chen S. H.: Synchronization criteria for non-autonomous chaotic systems vie sinusoidal state error feedback control.Physica Scripta 75 (2007), 379–387
Reference: [3] Chen H. K.: Chaotic and chaos synchronization of symmetric gyro with linear-plus-cubic damping.J. Sound Vibration 255 (2002), 719–740 MR 1923490
Reference: [4] Chen L. J., Li J. B.: Chaotic behavior and subharmonic bifurcations for a rotating pendulum equation.Internat. J. Bifur. Chaos 14 (2004), 3477–3488 Zbl 1129.70326, MR 2107559
Reference: [5] Haeri M., Emadzadeh A. A.: Comparative study of various methods for synchronizing two different chaotic systems.Phys. Lett. A 356 (2006), 59–64 Zbl 1160.37344
Reference: [6] Ho M. C., Hung Y. C., Chou C. H.: Phase and anti-phase synchronization of two chaotic systems by using active control.Phys. Lett. A 296 (2002), 43–48 Zbl 1098.37529
Reference: [7] Jiang G. P., Tang W. K. S., Chen G. R.: A simple global synchronization criterion for coupled chaotic systems.Chaos, Solitons and Fractals 15 (2003), 925–935 Zbl 1065.70015, MR 1932235
Reference: [8] Li G. H.: Generalized projective synchronization of two chaotic systems by using active control.Chaos, Solitons and Fractals 30 (2006), 77–82 Zbl 1144.37372
Reference: [9] Njah A. N., Vincent U. E.: Chaos synchronization between single and double wells Duffing–Van der Pol oscillators using active control.Chaos, Solitons and Fractals, doi:10.1016/j.chaos.2006.10.038 Zbl 1142.93350
Reference: [10] Pecora L. M. L.Carroll T.: Synchronization in chaotic systems.Phys. Rev. Lett. 64 (1990), 821–824 Zbl 0938.37019, MR 1038263
Reference: [11] Sun F. Y.: Global chaos synchronization between two new different chaotic systems via active control.Chinese Phys. Lett. 23 (2006), 32–34
Reference: [12] Ucar A., Lonngren K. E., Bai E. W.: Chaos synchronization in RCL-shunted Josephson junction via active control.Chaos, Solitons and Fractals 31 (2007), 105–111
Reference: [13] Wang J. G., Zhao Y.: Chaotic synchronization of the master slave chaotic systems with different structures based on bang-bang control principle.Chinese Phys. Lett. 22 (2005), 2508–2510
Reference: [14] Wu X. F., Cai J. P., Wang M. H.: Master-slave chaos synchronization criteria for the horizontal platform systems via linear state error feedback control.J. Sound Vibration 295 (2006), 378-387 MR 2239755
Reference: [15] Wu X. F., Cai J. P., Zhao Y.: Revision and improvement of a theorem for robust synchronization of nonidentical Lur’e systems.IEEE Trans. Circuits and Systems-II 52 (2005), 429–432
Reference: [16] Wu X. F., Cai J. P., Wang M. H.: Robust synchronization of chaotic horizontal platform systems with phase difference.J. Sound Vibration 305 (2007), 481–491 MR 2324743
Reference: [17] al. Z. F. Zhang et: Qualitative Theory on Differential Equations.Science Press, Beijing 2006 (in Chinese)
.

Files

Files Size Format View
Kybernetika_44-2008-4_9.pdf 2.556Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo