Previous |  Up |  Next

Article

Title: Determination of phase-space reconstruction parameters of chaotic time series (English)
Author: Cai, Wei-Dong
Author: Qin, Yi-Qing
Author: Yang, Bing-Ru
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 4
Year: 2008
Pages: 557-570
Summary lang: English
.
Category: math
.
Summary: A new method called C-C-1 method is suggested, which can improve some drawbacks of the original C-C method. Based on the theory of period N, a new quantity S(t) for estimating the delay time window of a chaotic time series is given via direct computing a time-series quantity S(m,N,r,t), from which the delay time window can be found. The optimal delay time window is taken as the first period of the chaotic time series with a local minimum of S(t). Only the first local minimum of the average of a quantity Δ S2(t) is needed to ascertain the optimal delay time. The parameter of the C-C method - embedding dimension $m$ - is adjusted rationally. In the new method, the estimates of the optimal delay time and the optimal delay time window are more appropriate. The robustness of the C-C-1 method reaches 40 (English)
Keyword: phase-space reconstruction
Keyword: embedding window
Keyword: delay time
Keyword: time series
MSC: 37D45
MSC: 37M10
MSC: 62M10
MSC: 62M15
idZBL: Zbl 1179.37048
idMR: MR2459073
.
Date available: 2009-09-24T20:38:04Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135874
.
Reference: [1] Grassberger P., Procaccia I.: Measure the strangeness of strange attractors.Physica D 9 (1983), 189–208 MR 0732572
Reference: [2] Huang R. S.: Chaos and Application.Wuhan University Press, Wuhan 2000
Reference: [3] Kim H. S., Eykholt, R., Salas J. D.: Nonlinear dynamics, delay times, and embedding windows.Physica D 127 (1999), 48–60 Zbl 0941.37054
Reference: [4] Lu J. H., Lu J. A., Chen S. H.: Analysis and Application of Chaotic Time Series.Wuhan University Press, Wuhan 2002
Reference: [6] Ma H. G., Li X. H., Wang G. H.: Selection of embedding dimension and delay time in phase space reconstruction.J. Xi’an Jiaotong University 38 (2004), 335–338
Reference: [7] Small M., Tse C. K.: Optimal embedding parameters: A modeling paradigm.Physica D: Nonlinear Phenomena 194 (2004), 283–296 MR 2075657
Reference: [9] Sauer T., Yorke J. A., Casdagli M.: Embedology.J. Statist. Phys. 65 (1991), 579–616 Zbl 0943.37506, MR 1137425
Reference: [10] Takens F.: Detecting Strange Attractors in Turbulence.Dynamical Systems and Turbulence. (Lecture Notes in Mathematics 898.) Springer-Verlag, Berlin 1981, pp. 366–381 Zbl 0513.58032, MR 0654900
Reference: [11] Takens F.: On the Numerical Determination of the Dimension of an Attractor.Dynamical System and Turbulence. (Lecture Notes in Mathematics 1125.) Springer-Verlag, Berlin 1985, pp. 99–106 Zbl 0561.58027, MR 0798084
Reference: [12] Wang Y., Xu W.: The methods and performance of phase space reconstruction for the time series in Lorenz system.J. Vibration Engrg. 19 (2006), 277–282
Reference: [13] Xiu C. B., Liu X. D., Zhang Y. H.: Selection of embedding dimension and delay time in the phase space reconstruction.Trans. Beijing Institute of Technology 23 (2003), 219–224
Reference: [14] Zhang Y., Ren C. L.: The methods to confirm the dimension of re-constructed phase space.J. National University of Defense Technology 27 (2005), 101–105
.

Files

Files Size Format View
Kybernetika_44-2008-4_11.pdf 767.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo