Title:
|
On the solution of the constrained multiobjective control problem with the receding horizon approach (English) |
Author:
|
De Vito, Daniele |
Author:
|
Scattolini, Riccardo |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
44 |
Issue:
|
5 |
Year:
|
2008 |
Pages:
|
649-663 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper deals with a multiobjective control problem for nonlinear discrete time systems. The problem consists of finding a control strategy which minimizes a number of performance indexes subject to state and control constraints. A solution to this problem through the Receding Horizon approach is proposed. Under standard assumptions, it is shown that the resulting control law guarantees closed-loop stability. The proposed method is also used to provide a robustly stabilizing solution to the problem of simultaneously minimizing a set of $H_{\infty }$ cost functions for a class of systems subject to bounded disturbances and/or parameter uncertainties. Numeric examples are reported to highlight the stabilizing action of the proposed control laws. (English) |
Keyword:
|
multiobjective optimization |
Keyword:
|
receding horizon control |
Keyword:
|
robust control |
Keyword:
|
stability |
MSC:
|
34H05 |
MSC:
|
49J35 |
MSC:
|
90C29 |
MSC:
|
90C59 |
MSC:
|
93B36 |
MSC:
|
93C10 |
MSC:
|
93C55 |
MSC:
|
93D15 |
idZBL:
|
Zbl 1178.93089 |
idMR:
|
MR2479310 |
. |
Date available:
|
2009-09-24T20:38:49Z |
Last updated:
|
2012-06-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135880 |
. |
Reference:
|
[1] Allgöwer F., Badgwell T. A., Qin J. S., Rawlings J. B., Wright S. J.: Nonlinear predictive control and moving horizon estimation – an introductory overview.In: Advances in Control (P. M. Frank, ed.), Springer–Verlag, Berlin 1999, pp. 391–449 |
Reference:
|
[2] Borisson U.: Self-tuning regulators for a class of multivariable systems.Automatica 15 (1979), 209–215 |
Reference:
|
[3] Nicolao G. De, Magni, L., Scattolini R.: Stability and robustness of nonlinear receding-horizon control.In: Nonlinear Model Predictive Control (F. Allgöwer and A. Zheng, eds.), Birkhäuser Verlag, Basel 2000 Zbl 0958.93512, MR 1756662 |
Reference:
|
[4] Karbowski A.: Optimal infinite-horizon multicriteria feedback control of stationary systems with minimax objectives and bounded disturbances.J. Optim. Theory Appl. 101 (1999), 59–71 Zbl 0945.90055, MR 1685591 |
Reference:
|
[5] Lazar M., Heelmes W. P. M. H., Bemporad, A., Weiland S.: Discrete-time non-smooth nonlinear MPC: stability and robustness.In: Assessment and Future Directions of Nonlinear Model Predictive Control (Lecture Notes in Control and Information Science 358; R. Findeisen, F. Allgöwer and L. T. Biegler, eds.), Springer–Verlag, Berlin 2007, pp. 93–103 MR 2252836 |
Reference:
|
[6] Li, Duan: On the minimax solution of multiple linear-quadratic problems.IEEE Trans. Automat. Control 35 (1990), 59–71 Zbl 0721.49034, MR 1073261 |
Reference:
|
[7] Maciejowski J.: Predictive Control with Constraints.Prentice-Hall, N.J. 2001 Zbl 0978.93002 |
Reference:
|
[8] Magni L., Nicolao G. De, Scattolini, R., Allgöwer F.: Robust model predictive control of nonlinear discrete-time systems.Internat. J. Robust and Nonlinear Control 13 (2003), 229–246 MR 1973635 |
Reference:
|
[9] Magni L., Raimondo D. M., Scattolini R.: Regional input-to-state stability for nonlinear model predictive control.IEEE Trans. Automat. Control 51 (2006), 1548–1553 MR 2260135 |
Reference:
|
[10] Scattolini R.: Multi-rate self-tuning predictive controller for multi-variable systems.Internat. J. Systems Sci. 23 (1993), 1347–1359 MR 1179989 |
Reference:
|
[11] Shtessel Y. B.: Principle of proportional damages in a multiple criteria LQR problem.IEEE Trans. Automat. Control 41 (1996), 461–464 Zbl 0966.49501, MR 1383000 |
. |