Previous |  Up |  Next

Article

Title: Extreme distribution functions of copulas (English)
Author: Úbeda-Flores, Manuel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 6
Year: 2008
Pages: 817-825
Summary lang: English
.
Category: math
.
Summary: In this paper we study some properties of the distribution function of the random variable C(X,Y) when the copula of the random pair (X,Y) is M (respectively, W) – the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other –, and C is any copula. We also study the distribution functions of M(X,Y) and W(X,Y) given that the joint distribution function of the random variables X and Y is any copula. (English)
Keyword: copula
Keyword: diagonal section
Keyword: distribution function
Keyword: Lipschitz condition
Keyword: opposite diagonal section
Keyword: ordering
Keyword: Spearman’s footrule
MSC: 60E05
MSC: 60E15
MSC: 60G70
MSC: 62E10
MSC: 62H05
MSC: 62H10
idZBL: Zbl 1196.62060
idMR: MR2488909
.
Date available: 2009-09-24T20:40:34Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/135893
.
Reference: [1] Behboodian J., Dolati A., Úbeda-Flores M.: Measures of association based on average quadrant dependence.J. Probab. Statist. Sci. 3 (2005), 161–173
Reference: [2] Capérà P., Fougères A.-L., Genest C.: A stochastic ordering based on a decomposition of Kendall’s tau.In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer, Dordrecht 1997, pp. 81–86
Reference: [3] Baets B. De, Meyer, H. De, Úbeda-Flores M.: Constructing copulas with given diagonal and opposite diagonal sections, to appea.
Reference: [4] Durante F., Kolesárová A., Mesiar, R., Sempi C.: Copulas with given diagonal sections: novel constructions and applications.Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 15 (2007), 397–410 Zbl 1158.62324, MR 2362234, 10.1142/S0218488507004753
Reference: [5] Fredricks G. A., Nelsen R. B.: Copulas constructed from diagonal sections.In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129–136 Zbl 0906.60022, MR 1614666
Reference: [6] Fredricks G. A., Nelsen R. B.: The Bertino family of copulas.In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81–91 Zbl 1135.62334, MR 2058982
Reference: [7] Genest C., Rivest L.-P.: On the multivariate probability integral transformation.Statist. Probab. Lett. 53 (2001), 391–399 Zbl 0982.62056, MR 1856163, 10.1016/S0167-7152(01)00047-5
Reference: [8] Gini C.: L’Ammontare e la composizione della ricchezza delle nazione.Bocca Torino 1914
Reference: [9] Mikusiński P., Sherwood, H., Taylor M. D.: Shuffles of Min.Stochastica 13 (1992), 61–74 Zbl 0768.60017, MR 1197328
Reference: [10] Nelsen R. B.: Concordance and Gini’s measure of association.J. Nonparametric Statist. 9 (1998), 227–238 Zbl 0919.62057, MR 1649514, 10.1080/10485259808832744
Reference: [11] Nelsen R. B.: An Introduction to Copulas.Second edition. Springer, New York 2006 Zbl 1152.62030, MR 2197664
Reference: [12] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Distribution functions of copulas: a class of bivariate probability integral transforms.Statist. Probab. Lett. 54 (2001), 277–282 Zbl 0992.60020, MR 1857942, 10.1016/S0167-7152(01)00060-8
Reference: [13] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Kendall distribution functions.Statist. Probab. Lett. 65 (2003), 263–268 Zbl 1183.60006, MR 2018039, 10.1016/j.spl.2003.08.002
Reference: [14] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of bivariate distribution functions.J. Multivariate Anal. 90 (2004), 348–358 Zbl 1057.62038, MR 2081783, 10.1016/j.jmva.2003.09.002
Reference: [15] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: On the construction of copulas and quasi-copulas with given diagonal sections.Insurance: Math. Econ. 42 (2008), 473–483 Zbl 1152.60311, MR 2404309, 10.1016/j.insmatheco.2006.11.011
Reference: [16] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Kendall distribution functions and associative copulas.Fuzzy Sets and Systems 160 (2009), 52–57 Zbl 1183.60006, MR 2469430
Reference: [17] Sklar A.: Fonctions de répartition à n dimensions et leurs marges.Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600
Reference: [18] Sklar A.: Random variables, joint distributions, and copulas.Kybernetika 9 (1973), 449–460 MR 0345164
Reference: [19] Spearman C.: ‘Footrule’ for measuring correlation.British J. Psychology 2 (1906), 89–108
.

Files

Files Size Format View
Kybernetika_44-2008-6_7.pdf 669.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo