Previous |  Up |  Next

Article

Title: Symmetries of random discrete copulas (English)
Author: Erdely, Arturo
Author: González–Barrios, José M.
Author: Nelsen, Roger B.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 6
Year: 2008
Pages: 846-863
Summary lang: English
.
Category: math
.
Summary: In this paper we analyze some properties of the discrete copulas in terms of permutations. We observe the connection between discrete copulas and the empirical copulas, and then we analyze a statistic that indicates when the discrete copula is symmetric and obtain its main statistical properties under independence. The results obtained are useful in designing a nonparametric test for symmetry of copulas. (English)
Keyword: discrete copulas
Keyword: r-symmetric permutations
Keyword: independence
MSC: 60C05
MSC: 62E15
MSC: 62H05
idZBL: Zbl 1206.62099
idMR: MR2488911
.
Date available: 2009-09-24T20:40:51Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/135895
.
Reference: [1] Aguiló I., Suñer, J., Torrens J.: Matrix representation of discrete quasi-copulas.Fuzzy Sets and Systems 159 (2008), 1658–1672 MR 2419976, 10.1016/j.fss.2007.10.004
Reference: [2] Alsina C., Frank, M. J, Schweizer B.: Associative Functions: Triangular Norms and Copulas.World Scientific Publishing Co., Singapore 2006 Zbl 1100.39023, MR 2222258
Reference: [3] Deheuvels P.: La fonction de dépendance empirique et ses propriétés.Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274–292 Zbl 0422.62037, MR 0573609
Reference: [4] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [5] Klement E. P., Mesiar R.: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms.Elsevier, Amsterdam 2005 Zbl 1063.03003, MR 2166082
Reference: [6] Kolesárová A., Mesiar R., Mordelová, J., Sempi C.: Discrete copulas.IEEE Trans. Fuzzy Systems. 14 (2006), 698–705 10.1109/TFUZZ.2006.880003
Reference: [7] Kolesárová A., Mordelová J.: Quasi-copulas and copulas on a discrete scale.Soft Computing 10 (2006), 495–501 Zbl 1096.60012, 10.1007/s00500-005-0524-6
Reference: [8] Mayor G., Suñer, J., Torrens J.: Copula-like operations on finite settings.IEEE Trans. Fuzzy Systems 13 (2005), 468–477 10.1109/TFUZZ.2004.840129
Reference: [9] Mayor G., Suñer, J., Torrens J.: Sklar’s Theorem in finite settings.IEEE Trans. Fuzzy Systems 15 (2007), 410–416 10.1109/TFUZZ.2006.882462
Reference: [10] Mesiar R.: Discrete copulas – what they are.In: Joint EUSFLAT-LFA 2005, Conference Proceedings (E. Montseny and P. Sobrevilla, eds.) Universitat Politecnica de Catalunya, Barcelona 2005, pp. 927–930
Reference: [11] Miller W.: The maximum order of an element of a finite symmetric group.Amer. Math. Monthly 94 (1987), 6, 497–506 Zbl 1191.11027, MR 0935414, 10.2307/2322839
Reference: [12] Nelsen R. B.: An Introduction to Copulas.Second edition. Springer, New York 2006 Zbl 1152.62030, MR 2197664
Reference: [13] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North-Holland, New York 1983 Zbl 0546.60010, MR 0790314
Reference: [14] Skiena S.: The cycle structure of permutations.In: Implementing Discrete Mathematics: Combinatorial and Graph Theory with Mathematica. Addison-Wesley, Reading, MA 1990, pp. 20–24 MR 1061378
.

Files

Files Size Format View
Kybernetika_44-2008-6_9.pdf 871.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo