Title:
|
Quasi-copulas with quadratic sections in one variable (English) |
Author:
|
Rodríguez–Lallena, José Antonio |
Author:
|
Úbeda-Flores, Manuel |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
44 |
Issue:
|
6 |
Year:
|
2008 |
Pages:
|
879-890 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We introduce and characterize the class of multivariate quasi-copulas with quadratic sections in one variable. We also present and analyze examples to illustrate our results. (English) |
Keyword:
|
1-Lipschitz condition |
Keyword:
|
copula |
Keyword:
|
quasi-copula |
Keyword:
|
quadratic sections |
MSC:
|
26B99 |
MSC:
|
60E05 |
MSC:
|
62H05 |
idZBL:
|
Zbl 1181.62072 |
idMR:
|
MR2488913 |
. |
Date available:
|
2009-09-24T20:41:08Z |
Last updated:
|
2013-09-21 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135897 |
. |
Reference:
|
[1] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions.Statist. Probab. Lett. 17 (1993), 85–89 Zbl 0798.60023, MR 1223530, 10.1016/0167-7152(93)90001-Y |
Reference:
|
[2] Cuculescu I., Theodorescu R.: Copulas: diagonals and tracks.Rev. Roumaine Math. Pures Appl. 46 (2001), 731–742 MR 1929521 |
Reference:
|
[3] Baets B. De, Meyer, H. De, Úbeda-Flores M.: Extremes of the mass distribution associated with a trivariate quasi-copula.C. R. Acad. Sci. Paris, Ser. I 344 (2007), 587–590 Zbl 1131.62044, MR 2323747, 10.1016/j.crma.2007.03.026 |
Reference:
|
[4] Baets B. De, Meyer H. De, Schuymer, B. De, Jenei S.: Cyclic evaluation of transitivity of reciprocal relations.Soc. Choice Welf. 26 (2006), 217–238 Zbl 1158.91338, MR 2226508, 10.1007/s00355-006-0093-3 |
Reference:
|
[5] Durante F., Quesada-Molina J. J., Úbeda-Flores M.: On a family of multivariate copulas for aggregation processes.Inform. Sci. 177 (2007), 5715–5724 Zbl 1132.68761, MR 2362216, 10.1016/j.ins.2007.07.019 |
Reference:
|
[6] Genest C., Quesada-Molina J. J., Rodríguez-Lallena J.A., Sempi C.: A characterization of quasi-copulas.J. Multivariate Anal. 69 (1999), 193–205 Zbl 0935.62059, MR 1703371, 10.1006/jmva.1998.1809 |
Reference:
|
[7] Janssens S., Baets, B. De, Meyer H. De: Bell-type inequalities for quasi-copulas.Fuzzy Sets Syst. 148 (2004), 263–278 Zbl 1057.81011, MR 2100199 |
Reference:
|
[8] Klement E. P., Kolesárová A.: 1–Lipschitz aggregation operators, quasi-copulas and copulas with given diagonals.In: Soft Methodology and Random Information Systems (M. López-Díaz, M.A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 205–211 Zbl 1071.62048, MR 2118098 |
Reference:
|
[9] Klement E. P., Kolesárová A.: Extension to copulas and quasi-copulas as special 1-Lipschitz aggregation operators.Kybernetika 41 (2005), 329–348 MR 2181422 |
Reference:
|
[10] Klement E. P., Kolesárová A.: Intervals of 1-Lipschitz aggregation operators, quasi-copulas, and copulas with given affine section.Monatsh. Math. 152 (2007), 151–167 Zbl 1138.60016, MR 2346431, 10.1007/s00605-007-0460-x |
Reference:
|
[11] Kolesárová A.: 1-Lipschitz aggregation operators and quasi-copulas.Kybernetika 39 (2003), 615–629 MR 2042344 |
Reference:
|
[12] Nelsen R. B.: An Introduction to Copulas.Second edition. Springer, New York 2006 Zbl 1152.62030, MR 2197664 |
Reference:
|
[13] Nelsen R. B., Úbeda-Flores M.: The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas.C. R. Acad. Sci. Paris, Ser. I 341 (2005), 583–586 Zbl 1076.62053, MR 2182439, 10.1016/j.crma.2005.09.026 |
Reference:
|
[14] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Multivariate Archimedean quasi-copulas.In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez, eds.), Kluwer, Dordrecht 2002, pp. 179–185 Zbl 1135.62338, MR 2058991 |
Reference:
|
[15] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of bivariate distribution functions.J. Multivariate Anal. 90 (2004), 348–358 Zbl 1057.62038, MR 2081783, 10.1016/j.jmva.2003.09.002 |
Reference:
|
[16] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: On the construction of copulas and quasi-copulas with given diagonal sections.Insurance: Math. Econom. 42 (2008), 473–483 Zbl 1152.60311, MR 2404309, 10.1016/j.insmatheco.2006.11.011 |
Reference:
|
[17] Nelsen R. B., Quesada-Molina J. J., Schweizer, B., Sempi C.: Derivability of some operations on distribution functions.In: Distributions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), CA: IMS Lecture Notes – Monograph Series Number 28), Hayward 1996, pp. 233–243 MR 1485535 |
Reference:
|
[18] Quesada-Molina J. J., Rodríguez-Lallena J. A.: Bivariate copulas with quadratic sections.J. Nonparametr. Statist. 5 (1995), 323–337 Zbl 0857.62060, MR 1379534, 10.1080/10485259508832652 |
Reference:
|
[19] Quesada-Molina J. J., Saminger-Platz, S., Sempi C.: Quasi-copulas with a given sub-diagonal section.Nonlinear Anal. 69 (2008), 4654–4673 Zbl 1151.62044, MR 2467261, 10.1016/j.na.2007.11.021 |
Reference:
|
[20] Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of multivariate distribution functions.Comm. Statist. Theory Methods 33 (2004), 805–820 Zbl 1066.62056, MR 2042768 |
Reference:
|
[21] Rodríguez-Lallena J. A., Úbeda-Flores M.: Compatibility of three bivariate quasi-copulas: Applications to copulas.In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Springer, Berlin 2004, pp. 173–180 Zbl 1064.62060, MR 2118094 |
Reference:
|
[22] Rodríguez-Lallena J. A., Úbeda-Flores M.: Multivariate copulas with quadratic sections in one variable.To appear Zbl 1197.62051, MR 2746580 |
Reference:
|
[23] Rodríguez-Lallena J. A., Úbeda-Flores M.: Some new characterizations and properties of quasi-copulas.To appear in Fuzzy Sets and Systems.doi: 10.1016/j.fss.2008.02.007 Zbl 1175.62048, MR 2493270 |
Reference:
|
[24] Saminger S., Baets, B. De, Meyer H. De: On the dominance relation between ordinal sums of conjunctors.Kybernetika 42 (2006), 337–350 MR 2253393 |
Reference:
|
[25] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600 |
Reference:
|
[26] Sklar A.: Random variables, joint distributions, and copulas.Kybernetika 9 (1973), 449–460 MR 0345164 |
Reference:
|
[27] Úbeda-Flores M.: A new family of trivariate proper quasi-copulas.Kybernetika 43 (2007), 75–85 Zbl 1131.62048, MR 2343332 |
. |