Previous |  Up |  Next

Article

Title: Quasi-copulas with quadratic sections in one variable (English)
Author: Rodríguez–Lallena, José Antonio
Author: Úbeda-Flores, Manuel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 6
Year: 2008
Pages: 879-890
Summary lang: English
.
Category: math
.
Summary: We introduce and characterize the class of multivariate quasi-copulas with quadratic sections in one variable. We also present and analyze examples to illustrate our results. (English)
Keyword: 1-Lipschitz condition
Keyword: copula
Keyword: quasi-copula
Keyword: quadratic sections
MSC: 26B99
MSC: 60E05
MSC: 62H05
idZBL: Zbl 1181.62072
idMR: MR2488913
.
Date available: 2009-09-24T20:41:08Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/135897
.
Reference: [1] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions.Statist. Probab. Lett. 17 (1993), 85–89 Zbl 0798.60023, MR 1223530, 10.1016/0167-7152(93)90001-Y
Reference: [2] Cuculescu I., Theodorescu R.: Copulas: diagonals and tracks.Rev. Roumaine Math. Pures Appl. 46 (2001), 731–742 MR 1929521
Reference: [3] Baets B. De, Meyer, H. De, Úbeda-Flores M.: Extremes of the mass distribution associated with a trivariate quasi-copula.C. R. Acad. Sci. Paris, Ser. I 344 (2007), 587–590 Zbl 1131.62044, MR 2323747, 10.1016/j.crma.2007.03.026
Reference: [4] Baets B. De, Meyer H. De, Schuymer, B. De, Jenei S.: Cyclic evaluation of transitivity of reciprocal relations.Soc. Choice Welf. 26 (2006), 217–238 Zbl 1158.91338, MR 2226508, 10.1007/s00355-006-0093-3
Reference: [5] Durante F., Quesada-Molina J. J., Úbeda-Flores M.: On a family of multivariate copulas for aggregation processes.Inform. Sci. 177 (2007), 5715–5724 Zbl 1132.68761, MR 2362216, 10.1016/j.ins.2007.07.019
Reference: [6] Genest C., Quesada-Molina J. J., Rodríguez-Lallena J.A., Sempi C.: A characterization of quasi-copulas.J. Multivariate Anal. 69 (1999), 193–205 Zbl 0935.62059, MR 1703371, 10.1006/jmva.1998.1809
Reference: [7] Janssens S., Baets, B. De, Meyer H. De: Bell-type inequalities for quasi-copulas.Fuzzy Sets Syst. 148 (2004), 263–278 Zbl 1057.81011, MR 2100199
Reference: [8] Klement E. P., Kolesárová A.: 1–Lipschitz aggregation operators, quasi-copulas and copulas with given diagonals.In: Soft Methodology and Random Information Systems (M. López-Díaz, M.A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 205–211 Zbl 1071.62048, MR 2118098
Reference: [9] Klement E. P., Kolesárová A.: Extension to copulas and quasi-copulas as special 1-Lipschitz aggregation operators.Kybernetika 41 (2005), 329–348 MR 2181422
Reference: [10] Klement E. P., Kolesárová A.: Intervals of 1-Lipschitz aggregation operators, quasi-copulas, and copulas with given affine section.Monatsh. Math. 152 (2007), 151–167 Zbl 1138.60016, MR 2346431, 10.1007/s00605-007-0460-x
Reference: [11] Kolesárová A.: 1-Lipschitz aggregation operators and quasi-copulas.Kybernetika 39 (2003), 615–629 MR 2042344
Reference: [12] Nelsen R. B.: An Introduction to Copulas.Second edition. Springer, New York 2006 Zbl 1152.62030, MR 2197664
Reference: [13] Nelsen R. B., Úbeda-Flores M.: The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas.C. R. Acad. Sci. Paris, Ser. I 341 (2005), 583–586 Zbl 1076.62053, MR 2182439, 10.1016/j.crma.2005.09.026
Reference: [14] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Multivariate Archimedean quasi-copulas.In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez, eds.), Kluwer, Dordrecht 2002, pp. 179–185 Zbl 1135.62338, MR 2058991
Reference: [15] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of bivariate distribution functions.J. Multivariate Anal. 90 (2004), 348–358 Zbl 1057.62038, MR 2081783, 10.1016/j.jmva.2003.09.002
Reference: [16] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: On the construction of copulas and quasi-copulas with given diagonal sections.Insurance: Math. Econom. 42 (2008), 473–483 Zbl 1152.60311, MR 2404309, 10.1016/j.insmatheco.2006.11.011
Reference: [17] Nelsen R. B., Quesada-Molina J. J., Schweizer, B., Sempi C.: Derivability of some operations on distribution functions.In: Distributions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), CA: IMS Lecture Notes – Monograph Series Number 28), Hayward 1996, pp. 233–243 MR 1485535
Reference: [18] Quesada-Molina J. J., Rodríguez-Lallena J. A.: Bivariate copulas with quadratic sections.J. Nonparametr. Statist. 5 (1995), 323–337 Zbl 0857.62060, MR 1379534, 10.1080/10485259508832652
Reference: [19] Quesada-Molina J. J., Saminger-Platz, S., Sempi C.: Quasi-copulas with a given sub-diagonal section.Nonlinear Anal. 69 (2008), 4654–4673 Zbl 1151.62044, MR 2467261, 10.1016/j.na.2007.11.021
Reference: [20] Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of multivariate distribution functions.Comm. Statist. Theory Methods 33 (2004), 805–820 Zbl 1066.62056, MR 2042768
Reference: [21] Rodríguez-Lallena J. A., Úbeda-Flores M.: Compatibility of three bivariate quasi-copulas: Applications to copulas.In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Springer, Berlin 2004, pp. 173–180 Zbl 1064.62060, MR 2118094
Reference: [22] Rodríguez-Lallena J. A., Úbeda-Flores M.: Multivariate copulas with quadratic sections in one variable.To appear Zbl 1197.62051, MR 2746580
Reference: [23] Rodríguez-Lallena J. A., Úbeda-Flores M.: Some new characterizations and properties of quasi-copulas.To appear in Fuzzy Sets and Systems.doi: 10.1016/j.fss.2008.02.007 Zbl 1175.62048, MR 2493270
Reference: [24] Saminger S., Baets, B. De, Meyer H. De: On the dominance relation between ordinal sums of conjunctors.Kybernetika 42 (2006), 337–350 MR 2253393
Reference: [25] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600
Reference: [26] Sklar A.: Random variables, joint distributions, and copulas.Kybernetika 9 (1973), 449–460 MR 0345164
Reference: [27] Úbeda-Flores M.: A new family of trivariate proper quasi-copulas.Kybernetika 43 (2007), 75–85 Zbl 1131.62048, MR 2343332
.

Files

Files Size Format View
Kybernetika_44-2008-6_11.pdf 798.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo