Title:
|
Typical continuous function without cycles is stable (English) |
Author:
|
Neubrunnová, Katarína |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
35 |
Issue:
|
2 |
Year:
|
1985 |
Pages:
|
123-126 |
. |
Category:
|
math |
. |
MSC:
|
26A18 |
MSC:
|
54H20 |
idZBL:
|
Zbl 0582.54026 |
idMR:
|
MR795005 |
. |
Date available:
|
2009-09-25T09:44:15Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/136382 |
. |
Reference:
|
[1] BLOCK L.: Stability of periodic oгbits in the theorem of Šarkovskii.Pгoc. Ameг. Math. Soc. 81, 1981, 333-336. MR 0593484 |
Reference:
|
[2] COVEN E. M., HEDLUND G. A.: Continuous maps of the inteгval whose peгiodic points foгm a closed set.Pгoc. Amer. Math. Soc. 79, 1980, 127-133. MR 0560598 |
Reference:
|
[З] KLOEDEN P.: Chaotic difference equations are dense.Bull. Austr. Math. Soc. 15, 1976, 371-379. Zbl 0335.39001, MR 0432829 |
Reference:
|
[4] LI T. Y., YORKE J. A.: Period three implies chaos.Amer. Math. Monthly 82, 1 975, 985-992. Zbl 0351.92021, MR 0385028 |
Reference:
|
[5] MAY R. M.: Sirnple mathematical models with very complicated dynamics.Nature 261, 1976, 459-467. |
Reference:
|
[6] SMÍTAL J., SMÍTALOVÁ K.: Structural stability of typical nonchaotic difference equations.Journ. Math. Anal. and Appl. 90, 1982, 1-11. MR 0680860 |
Reference:
|
[7] SMÍTAL J., NEUBRUNNOVÁ K.: Stability of typical continuous functions with respect to some properties of their iterates.Proc. Amer. Math. Soc. to appear. Zbl 0529.54038, MR 0727258 |
Reference:
|
[8] ШAPKOBCKИЙ A. H.: Cocyщecтвoвaниe циклoв нeпpepывнoгo npeoбpaзoвaния npямoй в ceбя.Укpaин. Maт. Жypнaл 16, 1964, 61-71. |
Reference:
|
[9] ШAPKOBCKИЙ A. H.: O циклax и cтpyктype нeпpepывнoгo oтoбpaжeния.Укpaин. Maт. Жypнaл 17, 1965, 104-111. MR 0186757 |
. |