Previous |  Up |  Next

Article

Title: Typical continuous function without cycles is stable (English)
Author: Neubrunnová, Katarína
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 35
Issue: 2
Year: 1985
Pages: 123-126
.
Category: math
.
MSC: 26A18
MSC: 54H20
idZBL: Zbl 0582.54026
idMR: MR795005
.
Date available: 2009-09-25T09:44:15Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136382
.
Reference: [1] BLOCK L.: Stability of periodic oгbits in the theorem of Šarkovskii.Pгoc. Ameг. Math. Soc. 81, 1981, 333-336. MR 0593484
Reference: [2] COVEN E. M., HEDLUND G. A.: Continuous maps of the inteгval whose peгiodic points foгm a closed set.Pгoc. Amer. Math. Soc. 79, 1980, 127-133. MR 0560598
Reference: [З] KLOEDEN P.: Chaotic difference equations are dense.Bull. Austr. Math. Soc. 15, 1976, 371-379. Zbl 0335.39001, MR 0432829
Reference: [4] LI T. Y., YORKE J. A.: Period three implies chaos.Amer. Math. Monthly 82, 1 975, 985-992. Zbl 0351.92021, MR 0385028
Reference: [5] MAY R. M.: Sirnple mathematical models with very complicated dynamics.Nature 261, 1976, 459-467.
Reference: [6] SMÍTAL J., SMÍTALOVÁ K.: Structural stability of typical nonchaotic difference equations.Journ. Math. Anal. and Appl. 90, 1982, 1-11. MR 0680860
Reference: [7] SMÍTAL J., NEUBRUNNOVÁ K.: Stability of typical continuous functions with respect to some properties of their iterates.Proc. Amer. Math. Soc. to appear. Zbl 0529.54038, MR 0727258
Reference: [8] ШAPKOBCKИЙ A. H.: Cocyщecтвoвaниe циклoв нeпpepывнoгo npeoбpaзoвaния npямoй в ceбя.Укpaин. Maт. Жypнaл 16, 1964, 61-71.
Reference: [9] ШAPKOBCKИЙ A. H.: O циклax и cтpyктype нeпpepывнoгo oтoбpaжeния.Укpaин. Maт. Жypнaл 17, 1965, 104-111. MR 0186757
.

Files

Files Size Format View
MathSlov_35-1985-2_3.pdf 376.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo