Previous |  Up |  Next

Article

Title: Time-optimal control of two-dimensional systems and regular synthesis (English)
Author: Kuben, Jaromír
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 40
Issue: 3
Year: 1990
Pages: 303-320
.
Category: math
.
MSC: 49K15
idZBL: Zbl 0753.49008
idMR: MR1094783
.
Date available: 2009-09-25T10:25:54Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136512
.
Reference: [1] BARBANTI L.: Lienard equations and control.Functional differential equations and bifurcations (Proceedings. Sao Carlos. Brasil 1979). Springer-Verlag, 1-22. MR 0585479
Reference: [2] BOLTYANSKII V. G.: Mathematical Methods of Optimal Control (Russian).Nauka, Moscow 1969 (Second edition). MR 0353082
Reference: [3] BOLTYANSKII V. G.: Sufficient conditions of optimality and the justification of the method of dynamic programming.(Russian). Izv. Akad. Nauk SSSR. Seria Mat., 28, 1964, 481-514. MR 0170753
Reference: [4] BOLTYANSKII V. G.: Sufficient conditions of optimality (Russian).DAN SSSR 140, No. 5, 1961, 994-997. MR 0133558
Reference: [5] BRUNOVSKÝ P.: Every normal linear system has a regular time-optimal synthesis.Math. Slovaca 28. 1978. 81 - 100. Zbl 0369.49013, MR 0527776
Reference: [6] BRUNOVSKÝ P.: Existence of regular synthesis for general control problems.J. Diff. Eq. 38, 1980, 317-343. Zbl 0417.49030, MR 0605053
Reference: [7] BRUNOVSKÝ P.: Regular synthesis for the linear-quadratic optimal control problem with linear control constraints.J. Diff. Eq. 38. 1980, 344-360. Zbl 0417.49014, MR 0605054
Reference: [8] CONTI R.: Equazione di Van der Pol e controllo in tempo minimo.Rapporti del 1st. Mat. "U. Dini", 13 1976 77.
Reference: [9] DAVIS M. J.: A property of the switching curve for certain systems.Int. J. Control 12, 1970, 457-463. MR 0277285
Reference: [10] JAMES E. M.: Time optimal control and the Van der Pol oscillator.J. Inst. Math. Applies. 13, 1974, 67-81. Zbl 0275.49039, MR 0346633
Reference: [11] KUBEN J.: Time-optimal control of two-dimensional systems.CSc. - thesis, UJEP Brno 1985. (Czech).
Reference: [12] KUBEN J.: Global controllability of two-dimensional systems and time-optimal control (Czech).Sborník VAAZ Brno, řada B. 2, 1986.
Reference: [13] LEE E. B., MARKUS L.: Foundations of Optimal Control Theory.J. Wiley and Sons 1967. In Russian Nauka. Moscow 1972. Zbl 0159.13201, MR 0220537
Reference: [14] LEE E. B., MARKUS L.: Optimal Control for Nonlinear Processes.Archive for Rational Mech. and Anal. 8. 1961. 36-58. Zbl 0099.08703, MR 0128571
Reference: [15] LEE E. B., MARKUS L.: On the existence of optimal controls.Trans. ASME, series D, J. of Basic Engin. 84. 1962. No 1. 13-23. MR 0133564
Reference: [16] LEE E. B., MARKUS L.: Synthesis of optimal control for nonlinear processes with one degree of freedom.Proceedings of Inter. Sympos. on Nonlin. Vibrations, t. III, Izdat. AN USSR. Kijev 1963, 200-218. MR 0180431
Reference: [17] LEE E. B., MARKUS L.: On necessary and sufficient conditions of time-optimality for nonlinear second order systems (Russian).Proceedings of 2nd Congress IFAC Basel 1963, Nauka. Moscow 1965, 155-167.
Reference: [18] VILLARI G.: Ciclo limite di Linèard e controllabilitá.Bol. Univ. Math. Hal. (5) 17-A, 1980, 406-413.
Reference: [19] REISSIG R., SANSONE G., CONTI R.: Qualitative Theorie nichtlinearer Differential-gleichungen.Edizioni Cremonese. Roma 1963. In Russian Nauka. Moscow 1974. MR 0158121
Reference: [20] NEUMAN F.: Sur les équations différentielles linéaires oscillatoires du deuxiéme ordre avec la dispersion fondamentale $o(l) = l - \pi$.Buletinul Institutuliu Politehnic Din Iasi, X(XIV), Fasc. 1 2. 1964, 37-42. MR 0197825
Reference: [21] NEUMAN F.: Criterion of periodicity of solutions of a certain differential equation with a periodic coefficient.Annali di Mat. pura et app.. (IV). vol. I.XXV. 1967, 385-396. Zbl 0148.07104, MR 0213652
Reference: [22] KUBEN J.: Establishing of Locus of Switching of Optimal Feedback Control (Czech).Sborník VAAZ Brno, rada B. 4. 1988.
.

Files

Files Size Format View
MathSlov_40-1990-3_9.pdf 1.383Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo