Previous |  Up |  Next

Article

Title: Structures related to Pascal's triangle modulo $2$ and their elementary theories (English)
Author: Korec, Ivan
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 44
Issue: 5
Year: 1994
Pages: 531-554
.
Category: math
.
MSC: 11B65
MSC: 11U05
idZBL: Zbl 0824.11008
idMR: MR1338427
.
Date available: 2009-09-25T11:01:25Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136627
.
Reference: [Bo] BONDARENKO B. A.: Generalized Pascal Triangles and Pyramids, Their Fractals.Graphs and Applications (Russian), Fan, Tashkent, 1990. Zbl 0706.05002, MR 1069753
Reference: [K1] KOREC I.: Generalized Pascal triangles. Decidability results.Acta Math. Univ. Comenian. 46-47 (1985), 93-130. Zbl 0607.05002, MR 0872334
Reference: [K2] KOREC I.: Generalized Pascal triangles.In: Proceedings of the V. Universal Algebra Symposium, Turawa, Poland, May 1988 (K. Halkowska and S. Stawski, eds.), World Scientific, Singapore, 1989, pp. 198-218. MR 1084405
Reference: [K3] KOREC I.: Definability of arithmetic operations in Pascal triangle modulo an integer divisible by two primes.Grazer Math. Ber. 318 (1993), 53-61. Zbl 0797.11024, MR 1227401
Reference: [Le] LE M.: On the number of solutions of the generalized Ramanjuan-Nagell equation $x^2 - D = 2^{n+2}$.Acta Arith. 60 (1991), 149-167. MR 1139052
Reference: [Mo] MONK J. D.: Mathematical Logic.Springer Verlag, New York, 1976. Zbl 0354.02002, MR 0465767
Reference: [Ri] RICHARD D.: Answer to a problem raised by J. Robinson: the arithmetic of positive or negative integers is definable from successor and divisibility.J. Symbolic Logic 50 (1985), 927-935. Zbl 0612.03009, MR 0820123
Reference: [Ro] ROBINSON J.: Definability and decision problems in arithmetic.J. Symbolic Logic 14 (1949), 98-114. Zbl 0034.00801, MR 0031446
Reference: [Se] SEMENOV A. L.: On definability of arithmetic in their fragments.(Russian), Dokl. Akad. Nauk SSSR 263 (1982), 44-47. MR 0647548
Reference: [Sh] SHOENFIELD J. R.: Mathematical Logic.Addison -Wesley, Reading, 1967. Zbl 0155.01102, MR 0225631
Reference: [Si] SINGMASTER D.: Notes on binomial coefficients III - Any integer divides almost all binomial coefficients.J. London Math. Soc. (2) 8 (1974), 555-560. Zbl 0293.05007, MR 0396285
Reference: [Wo] WOODS A.: Some Problems in Logic and Number Theory, and Their Connection.Ph.D. Thesis, University of Manchester, Manchester, 1981.
Reference: [Ye] YERSHOW, JU. L.: Decidability Problems and Constructive Models.(Russian), Nauka, Moscow, 1980.
.

Files

Files Size Format View
MathSlov_44-1994-5_6.pdf 1.469Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo