Previous |  Up |  Next

Article

Title: On approximate solutions of degenerate integrodifferential parabolic problems (English)
Author: Matejíčka, Ladislav
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 45
Issue: 1
Year: 1995
Pages: 91-103
.
Category: math
.
MSC: 45G10
MSC: 45K05
MSC: 45L05
idZBL: Zbl 0832.45007
idMR: MR1335844
.
Date available: 2009-09-25T11:04:47Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136638
.
Reference: [1] AMIEZ G., GREMAUD P. A.: On a numerical approach to Stefan-like problems.Numer. Math. 59 (1991), 71-89. Zbl 0731.65107, MR 1103754
Reference: [2] BERGER A. E., BREZIS H., ROGERS J. C. W.: A numerical method for solving the problem $\partial_t u(t) - \Delta f(u(t)) = 0$.RAIRO Modél. Math. Anal. Numér. 13 (1979), 297-312. MR 0555381
Reference: [3] GAJEWSKI H., GRÖGER K., ZACHARIAS K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademia-Verlag. Berlin, 1974. MR 0636412
Reference: [4] CHEN C., THOMÉE V., WAHLBIN L. B.: Finite element approximation of a parabolic integrodifferential equation with a weakly singular kernel.Math. Comp. 58 (1992), 587-602. MR 1122059
Reference: [5] JEROME J. W., ROSE M. E.: Error estimates for the multidimensional two-phase Stefan Problem.Math. Comp. 39 (1982), 377-414. Zbl 0505.65060, MR 0669635
Reference: [6] JÄGER W., KAČÚR J.: Approximation of porous medium type systems by non degenerate elliptic systems.Preprint, Universität Heilderberg, SFB 123 (1990).
Reference: [7] JÄGER W., KAČÚR J.: Solution of porous medium type systems by linear approximation schemes.Numer. Math. 60 (1991), 407-427. Zbl 0744.65060, MR 1137200
Reference: [8] KAČÚR J.: Method of Rothe in Evolution Equations.BSB Teubner Verlag, Leipzig, 1985. Zbl 0582.65084, MR 0834176
Reference: [9] KAČÚR J.: Application of Rothe's method to evolution integrodifferential equations.J. Reine Angew. Math. 388 (1988), 73-105. Zbl 0638.65098, MR 0944184
Reference: [10] KAČÚR J.-HANDLOVIČOVÁ A.-KAČÚROVÁ M.: Solution of nonlinear diffusion problems by linear approximation schemes.Preprint, Comenius University, Bratislava (Accepted to SIAM J. Numer. Anal.). Zbl 0792.65070, MR 1249039
Reference: [11] KAČÚROVÁ M.: Solution of porous medium type problems with nonlinear boundary conditions by linear approximation schemes.(To appear).
Reference: [12] MacCAMY R. C.-WONG J. S. W.: Stability theorems for some functional equations.Trans. Amer. Math. Soc. 164 (1972), 1-37. Zbl 0274.45012, MR 0293355
Reference: [13] MAGENES E.-NOCHETTO R. H.- VERDI C.: Energy error estimates for a linear scheme to approximate nonlinear parabolic equations.RAIRO Model. Math. Anal. Numer. 21 (1987), 655-678. MR 0921832
Reference: [14] MAGENES E.-VERDI C.-VISINTIN A.: Theoretical and numerical results on the two-phase Stefan problem.SIAM J. Numer. Anal. 26 (1989), 1425-1438. Zbl 0738.65092, MR 1025097
Reference: [15] McLEAN W.-THOMEE V.: Numerical solution of an evolution equation with a positive type memory term.J. Austral. Math. Soc. Ser. B (Submitted). Zbl 0791.65105, MR 1225703
Reference: [16] SLODIČKA M.: Application of Rothe's method to evolution integrodifferential systems.Comment. Math. Univ. Carolin. 30 (1989), 57-70. Zbl 0674.65110, MR 0995701
Reference: [17] SLODIČKA M.: On a numerical approach to nonlinear degenerate parabolic problems.Preprint, Comenius University, M6 (1992).
Reference: [18] SLODIČKA M.: Numerical solution of a parabolic equation with a weakly singular positive-type memory term.Preprint, Comenius University, M7 (1992). MR 1447332
.

Files

Files Size Format View
MathSlov_45-1995-1_11.pdf 1.130Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo