Previous |  Up |  Next

Article

Title: The irregularity strength of generalized Petersen graphs (English)
Author: Jendroľ, Stanislav
Author: Žoldák, Vladimír
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 45
Issue: 2
Year: 1995
Pages: 107-113
.
Category: math
.
MSC: 05C35
MSC: 05C78
idZBL: Zbl 0840.05081
idMR: MR1357066
.
Date available: 2009-09-25T11:05:04Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136640
.
Reference: [1] CHARTRAND G., JACOBSON M. S., LEHEL J., OELLERMANN O. R., RUIZ S., SABA F.: Irregular networks.Congr. Numer. 64 (1988), 184-192. MR 0988682
Reference: [2] DINITZ J. H., GARNICK D. K., GYÁRFÁS A.: On the irregularity strength of the m x n grid.J. Graph Theory 16 (1992), 355-374. MR 1174459
Reference: [3] EBERT G., HEMMETER J., LAZEBNIK F., WOLDAR A.: Irregularity strengths of certain graphs.Congr. Numer. 71 (1990), 39-52. MR 1041614
Reference: [4] FAUDREE R. J., JACOBSON M. S., KINCH L., LEHEL J.: Irregularity strength of dense graphs.Discrete Math. 91 (1991), 45-59. Zbl 0755.05092, MR 1120886
Reference: [5] FAUDREE R. J., LEHEL J.: Bound on the irregularity strength of regular graphs.In: Combinatorics. Colloq. Math. Soc. János Bolyai 52, Eger, 1987, pp. 247-256. MR 1221563
Reference: [6] GYÁRFÁS A.: The irregularity strength of $K_{m,n}$ is 4 for odd $m$.Discrete Math. 71 (1988), 273-274. MR 0959011
Reference: [7] GYÁRFÁS A.: The irregularity strength of $K_n - mK_2$.Utilitas Math. 35 (1989), 111-114. MR 0992395
Reference: [8] KINCH L., LEHEL J.: The irregularity strength of $tP_3$.Discrete Math. 94 (1991), 75-79. MR 1141057
Reference: [9] LEHEL J.: Facts and quests on degree irregular assignments.In: Graph Theory, Combinatorics and Applications, J. Wiley Sons, New York, 1991, pp. 765-782. Zbl 0841.05052, MR 1170823
Reference: [10] McQUILLAN D., RICHTER R. B.: On the crossing numbers of certain generalized Petersen graphs.Discrete Math. 104 (1992), 311-320. Zbl 0756.05048, MR 1171327
Reference: [11] NEDELA R., ŠKOVIERA M.: Which generalized Petersen graphs are Cayley graphs?.J. Graph Theory (Submitted). Zbl 0812.05026, MR 1315420
Reference: [12] SCHWENK A. J.: Enumeration of Hamiltonian cycles in certain generalized Petersen graphs.J. Combin. Theory Ser. B 47 (1989), 53-59. Zbl 0626.05038, MR 1007713
Reference: [13] WATKINS M. E.: A theorem on Tait colorings with an application to generalized Petersen graphs.J. Combin. Theory 6 (1969), 152-164. MR 0236062
.

Files

Files Size Format View
MathSlov_45-1995-2_1.pdf 566.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo