Previous |  Up |  Next

Article

Title: A saddle point approach to nonlinear eigenvalue problems (English)
Author: Motreanu, Dumitru
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 47
Issue: 4
Year: 1997
Pages: 463-477
.
Category: math
.
MSC: 47J30
MSC: 49R50
MSC: 58E15
idZBL: Zbl 0984.49026
idMR: MR1796959
.
Date available: 2009-09-25T11:25:09Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136708
.
Reference: [1] AMBROSETTI A.-RABINOWITZ P. H.: Dual variational methods in critical point theory and applications.J. Funct. Anal. 14 (1973), 369-381. Zbl 0273.49063, MR 0370183
Reference: [2] CHANG K. C.: Variational methods for non-differentiable functionals and their applications to partial differential equations.J. Math. Anal. Appl. 80 (1981), 102-129. Zbl 0487.49027, MR 0614246
Reference: [3] DEGIOVANNI M.: Bifurcation for odd nonlinear variational inequalities.Ann. Fac. Sci. Toulouse Math. (6) 11 (1990), 39-66. MR 1191471
Reference: [4] DU Y.: A deformation lemma and some critical point theorems.Bull. Austral. Math. Soc. 43 (1991), 161-168. Zbl 0714.58008, MR 1086730
Reference: [5] GHOUSSOUB N.: A min-max principle with a relaxed boundary condition.Proc. Amer. Math. Soc. 117 (1993), 439-447. Zbl 0791.49028, MR 1089405
Reference: [6] GHOUSSOUB N.-PREISS D.: A general mountain pass principle for locating and classifying critical points.Ann. Inst. H. Poincare. Anal. Non Lineaire 6 (1989), 321-330. Zbl 0711.58008, MR 1030853
Reference: [7] HOFER H.: A note on the topological degree at a critical point of mountainpath-type.Proc. Amer. Math. Soc. 90 (1984), 309-315. MR 0727256
Reference: [8] HULSHOF J.-van der VORST R.: Differential systems with strongly indefinite variational structure.J. Funct. Anal. 114 (1993), 97-105. Zbl 0793.35038, MR 1220982
Reference: [9] KAVIAN O.: Introduction á la theorie des points critiques et applications aux problémes elliptiques.Mathématiques & Applications 13, Springer Verlag, Paris, 1993. Zbl 0797.58005, MR 1276944
Reference: [10] KUBRULSKI R. S.: Variational methods for nonlinear eigenvalue problems.Differential Integral Equations 3 (1990), 923-932.
Reference: [11] LEFTER C.-MOTREANU D.: Critical point theory in nonlinear eigenvalue problems with discontinuities.In.: Internat. Ser. Numer. Math. 107, Birkhäuser Verlag, Basel, 1992, pp. 25-36. MR 1223355
Reference: [12] MOTREANU D.: Existence for minimization with nonconvex constraints.J. Math. Anal. Appl. 117 (1986), 128-137. Zbl 0599.49008, MR 0843009
Reference: [13] MOTREANU D.-PANAGIOTOPOULOS P. D.: Hysteresis: the eigenvalue problem for hemivariational inequalities.In: Models of Hysteresis, Longman Scient. PubL, Harlow, 1993, pp. 102-117. Zbl 0801.49027, MR 1235118
Reference: [14] PALAIS R. S.: Lusternik-Schnirelman theory on Banach manifolds.Topology 5 (1966), 115-132. Zbl 0143.35203, MR 0259955
Reference: [15] PALAIS R. S.-TERNG C. L.: Critical Point Theory and Submanifold Geometry.Lecture Notes in Math. 1353, Springer Verlag, Berlin, 1988. Zbl 0658.49001, MR 0972503
Reference: [16] RABINOWITZ P. H.: Variational methods for nonlinear eigenvalue problems.In: Eigenvalues of Nonlinear Problems (G. Prodi, ed.), C.I.M.E., Edizioni Cremonese, Roma, 1975, pp. 141-195. MR 0464299
Reference: [17] RABINOWITZ P. H.: Minimax Methods in Critical Point Theory With Applications to Differential Equations.CBMS Regional Conf. Ser. in Math. 65, Amer.Math.Soc, Providence, R.I., 1986. Zbl 0609.58002, MR 0845785
Reference: [18] RAUCH J.: Discontinuous semilinear differential equations and multiple valued maps.Proc. Amer. Math. Soc. 64 (1977), 277-282. Zbl 0413.35031, MR 0442453
Reference: [19] SCHECHTER M.-TINTAREV K.: Spherical maxima in Hilbert space and semilinear elliptic eigenvalue problems.Differential Integral Equations 3 (1990), 889-899. Zbl 0727.35105, MR 1059337
Reference: [20] SCHECHTER M.-TINTAREV K.: Points of spherical maxima and solvability of semilinear elliptic equations.Canad. J. Math. 43 (1991), 825-831. Zbl 0755.35083, MR 1127032
Reference: [21] SZULKIN A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems.Ann. Inst. H. Poincaré Anal. Non Lineaire 3 (1986), 77-109. Zbl 0612.58011, MR 0837231
Reference: [22] SZULKIN A.: Ljusternik-Schnirelman theory on $C^1$-manifold.Ann. Inst. H. Poincaré Anal Non Linéaire 5 (1988), 119-139. MR 0954468
Reference: [23] WANG T.: Ljusternik-Schnirelman category theory on closed subsets of Banach manifolds.J. Math. Anal. Appl. 149 (1990), 412-423. MR 1057683
Reference: [24] ZEIDLER E.: Ljusternik-Schnirelman theory on general level sets.Math. Nachr. 129 (1986), 235-259. Zbl 0608.58014, MR 0864637
.

Files

Files Size Format View
MathSlov_47-1997-4_9.pdf 1.250Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo