| Title:
|
Equivariant cohomology with local coefficients (English) |
| Author:
|
Golasiński, Marek |
| Language:
|
English |
| Journal:
|
Mathematica Slovaca |
| ISSN:
|
0139-9918 |
| Volume:
|
47 |
| Issue:
|
5 |
| Year:
|
1997 |
| Pages:
|
575-586 |
| . |
| Category:
|
math |
| . |
| MSC:
|
55N25 |
| MSC:
|
55N91 |
| MSC:
|
55S35 |
| MSC:
|
57S10 |
| idZBL:
|
Zbl 0938.55010 |
| idMR:
|
MR1635240 |
| . |
| Date available:
|
2009-09-25T11:26:52Z |
| Last updated:
|
2012-08-01 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/136714 |
| . |
| Reference:
|
[1] tom DIECK T.: Transformation Groups.Walter de Gruyter, Berlin, 1987. Zbl 0611.57002, MR 0889050 |
| Reference:
|
[2] ELMENDORF A. D.: Systems of fixed point set.Trans. Amer. Math. Soc. 277 (1983), 275-284. MR 0690052 |
| Reference:
|
[3] GOLASIŃSKI M.: An equivariant dual J. H. C. Whitehead Theorem.In: Colloq. Math. Soc. János Bolyai 55, North-Нolland, Amsterdam, 1989, pp. 283-288. MR 1244370 |
| Reference:
|
[4] ILLMAN S.: Equivariant Algebraic Topology Thesis.Pгinceton University, Princeton, N. J., 1972. MR 2622205 |
| Reference:
|
[5] ILLMAN S.: Equivariant singular homology and cohomology.Mem. Amer. Math. Soc. 156 (1975). Zbl 0297.55003, MR 0375286 |
| Reference:
|
[6] MATUMOTO T.: On G-CW complexes and a theorem of J. H. C. Whitehead.J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 363-374. Zbl 0232.57031, MR 0345103 |
| Reference:
|
[7] MATUMOTO T.: Equivariant cohomology theories on G-CW complexes.Osaka J. Math. 10 (1973), 51-68. Zbl 0272.55013, MR 0343259 |
| Reference:
|
[8] MATUMOTO T.: A complement to the theory of G-CW complexes.Japan J. Math. 10 (1984), 353-374. Zbl 0594.57021, MR 0884424 |
| Reference:
|
[9] MOERDIJK I.-SVENSSON J. A.: A Shapiro lemma for diagrams of spaces with applications to equivariant topology.Compositio Math. 96 (1995), 249-282. Zbl 0853.55005, MR 1327146 |
| Reference:
|
[10] MOLLER J. M.: On equivariant function spaces.Pacific J. Math. 142 (1990), 103-119. MR 1038731 |
| Reference:
|
[11] PIACENZA R. J.: Homotopy theory of diagrams and CW-complexes over a category.Canad. J. Math. 43 (1991), 814-824. Zbl 0758.55015, MR 1127031 |
| Reference:
|
[12] QUILLEN D. G.: Homotopical Algebra.Lecture Notes in Math. 43, Springer-Verlag, Berlin, 1967. Zbl 0168.20903, MR 0223432 |
| Reference:
|
[13] SHITANDA Y.: Abstract homotopy theory and homotopy theory of functor category.Hiroshima Math. J. 19 (1989), 477-497. Zbl 0701.18010, MR 1035138 |
| Reference:
|
[14] WANER S.: Equivariant homotopy theory and Milnor's theorem.Trans. Amer. Math. Soc. 258 (1980), 351-368. Zbl 0444.55010, MR 0558178 |
| Reference:
|
[15] WILSON S. J.: Equivariant homology theories on G-complexes.Trans. Amer. Math. Soc. 212 (1975), 155-171. MR 0377859 |
| Reference:
|
[16] WHITEHEAD G. W.: Elements of Homotopy Theory.Springer-Verlag, Berlin, 1978. Zbl 0406.55001, MR 0516508 |
| . |