Previous |  Up |  Next

Article

Title: Control and separating points of modular functions (English)
Author: Avallone, Anna
Author: Barbieri, Giuseppina
Author: Cilia, Raffaella
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 49
Issue: 2
Year: 1999
Pages: 155-182
.
Category: math
.
MSC: 06B30
MSC: 06C15
MSC: 28B05
MSC: 28B10
idZBL: Zbl 0965.28004
idMR: MR1696950
.
Date available: 2009-09-25T11:36:02Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136748
.
Reference: [Al] AAVALLONE A.: Liapunov theorem for modular functions.Internat. J. Theoret. Phys. 34 (1995), 1197-1204. MR 1353662
Reference: [A2] AVALLONE A.: Nonatomic vector-valued modular functions.Preprint (1995). MR 1739014
Reference: [A-L] AVALLONE A., LEPELLERE M. A.: Modular functions: Uniform boundedness and compactness.Rend. Circ. Mat. Palermo (2) XLVII (1998), 221-264. Zbl 0931.28009, MR 1633479
Reference: [A-W] AVALLONE A.-WEBER H.: Lattice uniformities generated by filters.J. Math. Anal. Appl. 209 (1997), 507-528. Zbl 0907.06015, MR 1474622
Reference: [B-Wl] BARBIERI G.-WEBER H.: A topological approach to the study of fuzzy measures.In: Functional Analysis and Economic Theory (Y. Abramovich et al., eds.), Springer, Berlin, 1998, pp. 17-46. Zbl 0916.28015, MR 1730117
Reference: [B-W2] BASILE A.-WEBER H.: Topological Boolean rings of first and second category.Separating points for a countable family of measures, Radovi Mat. 2 (1986), 113-125. Zbl 0596.28015, MR 0852966
Reference: [Bl] BASILE A.: Controls of families of finitely additive functions.Ricerche Mat. XXXV (1986), 291-302. Zbl 0648.28007, MR 0932439
Reference: [B2] BIRKHOFF G.: Lattice Theory.(3rd ed.), Amer. Math. Soc, Providence, R.L, 1967. Zbl 0153.02501, MR 0227053
Reference: [C] COSTANTINESCU C.: Some properties of speces of measures.Atti Sem. Mat. Fis. Univ. Modena 35, Supplemento (1987).
Reference: [Dl] DREWNOWSKI L.: Topological rings of sets, continuous set functions, integration. III.Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 20 (1972), 439-445. Zbl 0249.28006, MR 0316653
Reference: [D2] DREWNOWSKI L.: On control submeasures and measures.Studia Math. L (1974), 203-224. Zbl 0285.28015, MR 0352394
Reference: [F-Tl] FLEISCHER I.-TRAYNOR T.: Equivalence of group-valued measure on an abstract lattice.Bull. Acad. Polon. Sci. Ser. Sci. Math. 28 (1980), 549-556. MR 0628641
Reference: [F-T2] FLEISCHER I.-TRAYNOR T.: Group-valued modular functions.Algebra Universalis 14 (1982), 287-291. Zbl 0458.06004, MR 0654397
Reference: [Gl] GOULD G. G.: Extensions of vector-valued measures.Proc. London. Math. Soc. 16 (1966), 685-704. Zbl 0148.38102, MR 0196035
Reference: [G2] G.: General Lattice Theory.Pure Appl. Math., Academic Press, Boston, MA, 1978. Zbl 0436.06001, MR 0509213
Reference: [Kl] KINDLER J.: A Mazur-Orlicz type theorem for submodular set functions.J. Math. Anal. Appl. 120 (1986), 533-546. Zbl 0605.28004, MR 0864770
Reference: [K2] KRANZ P.: Mutual equivalence of vector and scalar measures on lattices.Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 25 (1977), 243-250. Zbl 0361.46041, MR 0444892
Reference: [K-W] KLEMENT E. P.-WEBER S.: Generalized measure.Fuzzy Sets and Systems 40 (1991), 375-394. MR 1103665
Reference: [L] LIPECKI Z.: A characterization of group-valued measures satisfying the countable chain condition.Colloq. Math. 11 (1974), 231-234. Zbl 0271.28009, MR 0364595
Reference: [O] OHBA S.: Some remarks on vector measures.Bull. Math. Soc. Sci. Math. 16 (1972), 217-223. Zbl 0275.28015, MR 0335746
Reference: [PI] PAP E.: Hewitt-Yosida decomposition for □-decomposable measures.Tatra Mt. Math. Publ. 3 (1993), 147-154. MR 1278528
Reference: [P2] PAP E.: Decompositions of supermodular functions and □-decomposable measures.Fuzzy Sets and Systems 65 (1994), 71-83. MR 1294041
Reference: [S] SCHMIDT K.: Jordan Decompositions of Generalized Vector Measures.Pitman Res. Notes Math. Ser. 214., Longman Sci. Tech., Harlow, 1989. Zbl 0692.28004, MR 1028550
Reference: [T] TRAYNOR T.: Modular functions and their Frechet-Nikodym topologies.In: Lecture Notes in Math. 1089, Springer, New Yourk, 1984, pp. 171-180. Zbl 0576.28014, MR 0786696
Reference: [Wl] WEBER H.: Uniform lattices I: A generalization of topological Riesz space and topological Boolean rings; Uniform lattices II.Ann. Mat. Pura Appl. 160; 165 (1991; 1993), 347-370; 133-158. MR 1163215
Reference: [W2] WEBER H.: Valuations on complemented lattices.Internat. J. Theoret. Phys. 34 (1995), 1799-1806. Zbl 0843.06005, MR 1353726
Reference: [W3] WEBER H.: Lattice uniformities and modular functions on orthomodular lattices.Order 12 (1995), 295-305. Zbl 0834.06013, MR 1361614
Reference: [W4] WEBER H.: On modular functions.Funct. Approx. Comment. Math. 24 (1996), 35-52. Zbl 0887.06011, MR 1453447
Reference: [W5] WEBER H.: Uniform lattices and modular functions.Atti Sem. Mat. Fis. Univ. Modena XLVII (1999), 159-182. Zbl 0989.28007, MR 1694416
Reference: [W6] WEBER H.: .Manuscript. Zbl 1239.00005
.

Files

Files Size Format View
MathSlov_49-1999-2_4.pdf 1.368Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo