Title:
|
Face size and the maximum genus of a graph. II: Nonsimple graphs (English) |
Author:
|
Huang, Yuanqiu |
Author:
|
Liu, Yanpei |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
51 |
Issue:
|
2 |
Year:
|
2001 |
Pages:
|
129-140 |
. |
Category:
|
math |
. |
MSC:
|
05C10 |
MSC:
|
05C40 |
idZBL:
|
Zbl 0985.05018 |
idMR:
|
MR1841442 |
. |
Date available:
|
2009-09-25T11:50:08Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/136799 |
. |
Reference:
|
[1] FU H.-TSAI M.: The maximum genus of diameter three graphs.Australas. J. Combin. 14 (1996), 1187-1197. Zbl 0862.05027, MR 1424333 |
Reference:
|
[2] GROSS J.-TUCKER T.: Topological Graph Theory.John Wiley, New York, 1987. Zbl 0621.05013, MR 0898434 |
Reference:
|
[3] HUANG Y.-LIU Y.: Face size and the maximum genus of a graph. Part 1: Simple graphs.3. Combin. Theory Ser. B 80 (2000), 356-370. MR 1794699 |
Reference:
|
[4] NEDELA R.-SKOVIERA M.: On graphs embeddable with short faces.In: Topics in Combinatorics and Graph Theory (R. Bodendiek, R. Henn, eds.), Physica Verlag, Heidelberg, 1990, pp. 519-529. Zbl 0705.05027, MR 1100074 |
Reference:
|
[5] NEBESKÝ L.: A new characterizations of the maximum genus of graphs.Czechoslovak Math. J. 31(106) (1981), 604-613. MR 0631605 |
Reference:
|
[6] NEBESKÝ L.: A note on upper embeddable graphs.Czechoslovak Math. J. 33(108) (1983), 37-40. Zbl 0518.05029, MR 0687415 |
Reference:
|
[7] RINGEISEN R. D.: Survey of results on the maximum genus of a graph.J. Graph Theory 3 (1978), 1-13. MR 0519169 |
Reference:
|
[8] THOMASSEN C.: Embeddings of graphs with no short noncontractible cycles.J. Combin. Theory Ser. B 42 (1990), 155-177. Zbl 0704.05011, MR 1046752 |
. |