Previous |  Up |  Next

Article

Title: Face size and the maximum genus of a graph. II: Nonsimple graphs (English)
Author: Huang, Yuanqiu
Author: Liu, Yanpei
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 51
Issue: 2
Year: 2001
Pages: 129-140
.
Category: math
.
MSC: 05C10
MSC: 05C40
idZBL: Zbl 0985.05018
idMR: MR1841442
.
Date available: 2009-09-25T11:50:08Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136799
.
Reference: [1] FU H.-TSAI M.: The maximum genus of diameter three graphs.Australas. J. Combin. 14 (1996), 1187-1197. Zbl 0862.05027, MR 1424333
Reference: [2] GROSS J.-TUCKER T.: Topological Graph Theory.John Wiley, New York, 1987. Zbl 0621.05013, MR 0898434
Reference: [3] HUANG Y.-LIU Y.: Face size and the maximum genus of a graph. Part 1: Simple graphs.3. Combin. Theory Ser. B 80 (2000), 356-370. MR 1794699
Reference: [4] NEDELA R.-SKOVIERA M.: On graphs embeddable with short faces.In: Topics in Combinatorics and Graph Theory (R. Bodendiek, R. Henn, eds.), Physica Verlag, Heidelberg, 1990, pp. 519-529. Zbl 0705.05027, MR 1100074
Reference: [5] NEBESKÝ L.: A new characterizations of the maximum genus of graphs.Czechoslovak Math. J. 31(106) (1981), 604-613. MR 0631605
Reference: [6] NEBESKÝ L.: A note on upper embeddable graphs.Czechoslovak Math. J. 33(108) (1983), 37-40. Zbl 0518.05029, MR 0687415
Reference: [7] RINGEISEN R. D.: Survey of results on the maximum genus of a graph.J. Graph Theory 3 (1978), 1-13. MR 0519169
Reference: [8] THOMASSEN C.: Embeddings of graphs with no short noncontractible cycles.J. Combin. Theory Ser. B 42 (1990), 155-177. Zbl 0704.05011, MR 1046752
.

Files

Files Size Format View
MathSlov_51-2001-2_1.pdf 774.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo