[1] BIRKHOFF G.: 
Lattice Theory. (Rev. ed.). Amer. Math. Soc. Colloq. Publ. 25, Amer. Math. Soc, New York, 1948. 
MR 0029876 | 
Zbl 0033.10103[2] CIGNOLI R.-D'OTTAVIANO I. M. L-MUNDICI D.: 
Algebraic Foundations of Many-Valued Reasoning. Trends in Logic. Studia Logica Library Vol. 7, Kluwer Academic Publishers, Dordrecht, 2000. 
MR 1786097[3] CONRAD P.: 
Lattice Ordered Groups. Math. Res. Library, Tulane University, New Orleans, 1970. 
Zbl 0258.06011[4] DI NOLA A.-SESSA S.: 
On MV-algebras of continuous functions. In: Non-classical Logics and Their Application to Fuzzy Subsets (U. Hohle, E. P. Klement, eds.), Kluwer Academic Publishers, Dordrecht, 1996, pp. 22-31. 
MR 1345639[5] GLUSCHANKOV D.: 
Cyclic ordered groups and MV-algebras. Czechoslovak Math. J. 43 (1993), 249-263. 
MR 1211747[6] JAKUBfK J.: 
On complete MV-algebras. Czechoslovak Math. J. 45 (1995), 473-480. 
MR 1344513[7] JAKUBlK J.: 
On archimedean MV-algebras. Czechoslovak Math. J. 48 (1998), 575-582. 
MR 1637871[8] JAKUBIK J.: 
Complete distributivity of lattice ordered groups and of vector lattices. Czechoslovak Math. J. (To appear). 
MR 1864049 | 
Zbl 0998.06013[9] MUNDICI D.: 
Interpretation of AFC* -algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63. 
MR 0819173[10] SIKORSKI R.: 
Boolean Algebras. (2nd ed.), Springer-Verlag, Berlin-Goettingen-Heidelberg-New York, 1964. 
Zbl 0123.01303[11] VULIKH B. Z.: Introduction to the Theory of Semiordered Spaces. Gos. Izd. Fiz.-Mat. Lit., Moskva, 1961 [English translation: Introduction to the Theory of Partially Ordered Spaces, Groningen, 1967]. (Russian)