Previous |  Up |  Next

Article

Title: Convex mappings of archimedean MV-algebras (English)
Author: Jakubík, Ján
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 51
Issue: 4
Year: 2001
Pages: 383-391
.
Category: math
.
MSC: 06D35
idZBL: Zbl 0990.06007
idMR: MR1864107
.
Date available: 2009-09-25T11:53:39Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136812
.
Reference: [1] CHANG C. C.: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 467-490. Zbl 0084.00704, MR 0094302
Reference: [2] CIGNOLI R.-D'OTTAVIANO I. M. L.-MUNDICI D.: Algebraic Foundations of Many-Valued Reasoning.Trends in Logic - Studia Logica Library Vol. 7, Kluwer Acadеmic Publishеrs, Dordrеcht, 2000. Zbl 0937.06009, MR 1786097
Reference: [3] CONRAD P.: Lattice Ordered Groups.Math. Rеs. Library IV, Tulanе Univеrsity, Nеw Orlеans, 1970. Zbl 0258.06011
Reference: [4] DARNEL M. R.: Theory of Lattice-Ordered Groups.M. Dеkkеr, Nеw York-Basel-Hong Kong, 1995. Zbl 0810.06016, MR 1304052
Reference: [5] DVUREČENSKIJ A.-PULМANNOVÁ S.: New Trends in Quantum Structures.Kluwer Acad. Publ., Dordrecht, 2000. Zbl 0987.81005
Reference: [6] GLUSCHANKOV D.: Cyclic ordered groups and $MV$-algebras.Czechoslovak Math. J. 43 (1993), 249-263. MR 1211747
Reference: [7] JAKUBÍK J.: Cantor-Bernstein theorem for lattice ordered groups.Czechoslovak Math. J. 22 (1972), 159-175. Zbl 0243.06009, MR 0297666
Reference: [8] JAKUBÍK J.: Sequential convergences on $MV$-algebras.Czechoslovak Math. J. 45 (1995), 709-726. Zbl 0845.06009, MR 1354928
Reference: [9] JAKUBÍK J.: On complete lattice ordered groups with strong units.Czechoslovak Math. J. 46 (1996), 221-230. Zbl 0870.06014, MR 1388611
Reference: [10] JAKUBÍK J.: On archimedean $MV$-algebras.Czechoslovak Math. J. 48 (1998), 575-582. Zbl 0951.06011, MR 1637871
Reference: [11] JAKUBÍK J.: Complete generators and maximal completions of $MV$-algebras.Czechoslovak Math. J. 48 (1998), 597-608. Zbl 0951.06010, MR 1637863
Reference: [12] JAKUBÍK J.: Cantor-Bernstein theorem for $MV$-algebras.Czechoslovak Math. J. 49 (1999), 517-526. Zbl 1004.06011, MR 1708370
Reference: [13] JAKUBIK J.: Convex isomorphisms of archimedean lattice ordered groups.Mathware Soft Comput. 5 (1998), 49-56. Zbl 0942.06008, MR 1632739
Reference: [14] MUNDICI D.: Interpretation of $AFC^\ast$ -algebras in Łukasiewicz sentential calculus.J. Funct. Anal. 65 (1986), 15-63. MR 0819173
Reference: [15] SCHMIDT J.: Zur Kennzeichnung der Dedekind - Mac Neilleschen Hülle einer geordneten Menge.Arch. Math. (Basel) 7 (1956), 241-249. MR 0084484
Reference: [16] SIKORSKI R.: A generalization of theorem of Banach and Cantor-Bernstein.Colloq. Math. 1 (1948), 140-144. MR 0027264
Reference: [17] SIKORSKI R.: Boolean Algebras.(2nd ed.), Springer Verlag, Berlin, 1964. Zbl 0123.01303, MR 0126393
Reference: [18] SIMONE A. DE-MUNDICI D.-NAVARA M.: A Cantor-Bernstein theorem for a complete $MV$-algebras.Preprint.
Reference: [19] TARSKI A.: Cardinal Algebras.Oxford University Press, New York-London, 1949. Zbl 0041.34502, MR 0029954
.

Files

Files Size Format View
MathSlov_51-2001-4_3.pdf 525.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo