Previous |  Up |  Next

Article

Title: Optimal control for $n\times n$ coupled systems governed by Petrowsky type equations with control-constrained and infinite number of variables (English)
Author: El-Saify, Hussain A.
Author: Bahaa, G. M.
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 53
Issue: 3
Year: 2003
Pages: 291-311
.
Category: math
.
MSC: 35R15
MSC: 49K20
idZBL: Zbl 1088.49023
idMR: MR2025024
.
Date available: 2009-09-25T14:15:03Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136886
.
Reference: [1] BAHAA G. M.: Quadratic Pareto optimal control of parabolic equation with state-control constraints and an infinite number of variables.IMA J. Math. Control Infoгm. 20 (2003), 167-178. Zbl 1029.49023, MR 1987533
Reference: [2] BEREZANSKII, JU. M.: Self-Adjoint Operators in Spaces of Functions of Infinitely Many Variables.Transl. Math. Monographs 63, Amer. Math. Soc, Providence, RI, 1986.
Reference: [3] BEREZANSKII, JU. M.: Self-adjointness of elliptic operator with an infinite number of variables.Ukrain. Mat. Zh. 27 (1975), 729-742. MR 0405094
Reference: [4] EL-SAIFY H. A.: Boundary control for the hyperbolic operator with an infinite number of variables.J. Inst. Math. Comput. Sci. Comput. Sci. Ser. 1 (1990), 47-51.
Reference: [5] EL-SAIFY H. A.: Boundary control problem with an infinite number of variables.Internal J. Math. Math. Sci. 28 (2001), 57-62. Zbl 0999.49003, MR 1882683
Reference: [6] EL-SAIFY H. A.-BAHAA G. M.: Optimal control for nxn systems of hyperbolic types.Rev. Mat. Apl. 22 (2001), 41-58. MR 1890942
Reference: [7] EL-SAIFY H. A.-SERAG H. M.-BAHAA G. M.: On optimal control for nxn elliptic system involving operators with an infinite number of variables.A.M.S.E. Advances in Modeling & Analysis 1-A 37 (2000), 47-61.
Reference: [8] GALI I. M.-EL-SAIFY H. A.: Optimal control of a system governed by hyperbolic operator with an infinite number of variables.J. Math. Anal. Appl. 85 (1982), 24-30. Zbl 0563.49013, MR 0647556
Reference: [9] GALI I. M.-EL-SAIFY H. A.: Distributed control of a system governed by Dirichlet and Neumann Problems for a self-adjoint elliptic operator with an infinite number of variables.J. Optim. Theory Appl. 39 (1983), 293-298. Zbl 0481.49015, MR 0693688
Reference: [10] IMANUVILOV O. YU.: On exact controllability for the Navier-Stokes equations.ESAIM: Control. Optim. Calc. Var. 3 (1998), 97-131. Zbl 1052.93502, MR 1617825
Reference: [11] KOTARSKI W.: Optimal control of a system governed by Petrowsky type equation with an infinite number of variables.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 35 (1996), 73-82. Zbl 0961.49011, MR 1485046
Reference: [12] KOTARSKI W.-EL-SAIFY H. A.-BAHAA G. M.: Optimal control of parabolic equation with an infinite number of variables for non-standard functional and time delay.IMA J. Math. Control Inform. 19 (2002), 461-476. Zbl 1044.49018, MR 1949014
Reference: [13] KOTARSKI W.-EL-SAIFY H. A.-BAHAA G. M.: Optimal control problem for a hyperbolic system with mixed control-state constraints involving operator of infinite order.Internat. J. Pure Appl. Math. 1 (2002), 241-254. Zbl 1009.49021, MR 1912680
Reference: [14] LI X.-YONG J.: Optimal Control Theory for Infinite Dimensional Systems.Birkhauser, Boston, 1995. MR 1312364
Reference: [15] LIONS J. L.: Optimal Control of Systems Governed by Partial Differential Equations.Grundlehren Math. Wiss. 170, Springer-Verlag, Berlin-Heidelberg-New York, 1971. Zbl 0203.09001, MR 0271512
Reference: [16] LIONS J. L.-ENRIQUE Z.: Approximate controllability of a hydro-elastic coupled system.ESAIM: Control. Optim. Calc. Var. 1 (1995), 1-15. Zbl 0878.93034, MR 1382513
Reference: [17] LIONS J. L.-MAGENES E.: Non-Homogeneous Boundary Value Problem and Applications.Vol. I. Grundlehren Math. Wiss. 181, Springer-Verlag, Berlin-Heidelberg-New York, 1972. MR 0350177
.

Files

Files Size Format View
MathSlov_53-2003-3_6.pdf 2.208Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo