Previous |  Up |  Next

Article

Title: Compressible groups (English)
Author: Foulis, David J.
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 53
Issue: 5
Year: 2003
Pages: 433-455
.
Category: math
.
MSC: 03G12
MSC: 06C15
MSC: 06F20
MSC: 46L05
MSC: 81P10
idZBL: Zbl 1068.06018
idMR: MR2038512
.
Date available: 2009-09-25T14:16:35Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136892
.
Reference: [1] ALFSEN E.-SCHULTZ F.: On the geometry of noncommutative spectral theory.Bull. Amer. Math. Soc. 81 (1975), 893-895. Zbl 0337.46014, MR 0377549
Reference: [2] BENNETT M. K.-FOULIS D. J.: Interval and scale effect algebras.Adv. in Appl. Math. 19 (1997), 200-215. Zbl 0883.03048, MR 1459498
Reference: [3] BLYTH T. S.-JANOWITZ M. F.: Residuation Theory.Pergamon, New York, 1972. Zbl 0301.06001, MR 0396359
Reference: [4] FOULIS D. J.: MV and Heyting effect algebras.Found. Phys. 30 (2000), 1687-1706. MR 1810197
Reference: [5] FOULIS D. J.: Compressions on partially ordered abelian groups.(Submitted). Zbl 1063.47003
Reference: [6] FOULIS D. J.: Removing the torsion from a unital group.Rep. Math. Phys. (To appear). Zbl 1054.81005, MR 2016215
Reference: [7] FOULIS D. J.-GREECHIE R. J.-BENNETT M. K.: The transition to unigroups.Internat. J. Theoret. Phys. 37 (1998), 45-64. Zbl 0904.06013, MR 1637148
Reference: [8] GREECHIE R. J.-FOULIS D. J.-PULMANNOVÁ S.: The center of an effect algebra.Order 12 (1995), 91-106. Zbl 0846.03031, MR 1336539
Reference: [9] GOODEARL K. R.: Partially Ordered Abelian Groups with Interpolation.Math. Surveys Monographs 20, Amer. Math. Soc, Providence, RI, 1986. Zbl 0589.06008, MR 0845783
Reference: [10] GUDDER S. P.: Examples, problems, and results in effect algebras.Internat. J. Theoret. Phys. 35 (1996), 2365-2376. Zbl 0868.03028, MR 1423412
Reference: [11] GUDDER S. P.: Sharply dominating effect algebras.Tatra Mt. Math. Publ. 15 (1998), 23-30. Zbl 0939.03073, MR 1655076
Reference: [12] GUDDER S. P.-PULMANNOVÁ S.-BUGAJSKI S.-BELTRAMETTI E. G.: Convex and linear effect algebras.Rep. Math. Phys. 44 (1999), 359-379. Zbl 0956.46002, MR 1737384
Reference: [13] HANDELMAN, D-HIGGS D.-LAWRENCE J.: Directed abelian groups, countably continuous rings, and Rickart $C^\ast$ -algebras.J. London Math. Soc 21 (1980), 193-202. MR 0575375
Reference: [14] JENČA G.: Blocks of homogeneous effect algebras.Bull. Austral. Math. Soc. 64 (2001), 81-98. Zbl 0985.03063, MR 1848081
Reference: [15] KADISON R. V.: Order properties of bounded self-adjoint operators.Proc. Amer. Math. Soc 2 (1951), 505-510. Zbl 0043.11501, MR 0042064
Reference: [16] PTÁK P.-PULMANNOVÁ S.: Orthomodular Structures as Quantum Logics.Kluwer, Dordrecht-Boston-London, 1991. Zbl 0743.03039, MR 1176314
Reference: [17] PULMANNOVÁ S.: Effect algebras with the Riesz decomposition property and $AF$ $C^\ast$-algebras.Found. Phys. 29 (1999), 1389-1401. MR 1739751
Reference: [18] RIESZ F.-SZ.-NAGY B.: Functional Analysis.Frederick Ungar Publishing Co., New York, 1955. MR 0071727
.

Files

Files Size Format View
MathSlov_53-2003-5_1.pdf 1.158Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo