Previous |  Up |  Next

Article

Title: A topological structure of solution sets to evolution systems (English)
Author: Ďurikovič, Vladimír
Author: Ďurikovičová, Monika
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 55
Issue: 5
Year: 2005
Pages: 529-554
.
Category: math
.
MSC: 35G30
MSC: 37L05
MSC: 47H30
MSC: 47J35
idZBL: Zbl 1150.35352
idMR: MR2200140
.
Date available: 2009-09-25T14:28:44Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136924
.
Reference: [1] AGRANOVIC M. S.-VISIK M. I.: Eliptic problems with a parameter and parabolic general type problems.Uspekhi Mat. Nauk 19 (1964), 53-161. (Russian) MR 0192188
Reference: [2] AMBROSETTI A.: Global inversion theorems and applications to nonlinear problems.Conf. Semin. Mat. Univ. Bari 163-168 (1979), 211-232. Zbl 0449.35041, MR 0585116
Reference: [3] ANDRES J.-GABOR G.-GORNIEWICZ L.: Boundary value problems on infinite intervals.Trans. Amer. Math. Soc 351 (2000), 4861-4903. Zbl 0936.34023, MR 1603870
Reference: [4] ANDRES J.-GABOR G.-GORNIEWICZ L.: Topological structure of solution sets to multi-valued asymptotic problems.Z. Anal. Anwendungen 19 (2000), 35-60. Zbl 0974.34045, MR 1748055
Reference: [5] ARONSZAJN N.: Le correspondant topologique de Vunicite dans la theorie des equations differentielles.Ann. of Math. (2) 43 (1942), 730-738. MR 0007195
Reference: [6] BANACH S.-MAZUR S.: Über mehrdeutige stetige Abbildungen.Studia Math. 5 (1934), 174-178. Zbl 0013.08202
Reference: [7] BORISOVIC, JU. G.-ZVJAGIN V. G.-SAPRONOV, JU. G.: Nonlinear Fredholm mappings and the Leray-Schauder theory.Uspekhi Mat. Nauk 32 (1977), 3-54. (Russian) MR 0464282
Reference: [8] BROWDER F. E.-GUPTA, CH. P.: Topological degree and nonlinear mappings of analytic type in Banach spaces.J. Math. Anal. Appl. 26 (1969), 390-402. Zbl 0176.45401, MR 0257826
Reference: [9] CACCIOPOLI R.: Un principio di inversione per le corrispondenze funzionali e sue applicazioni alle equazioni alle derivate parziali.Rend. Accad. Naz. Lincei 6(16) (1932).
Reference: [10] DEIMLING K.: Nonlinear Functional Analysis.Springer-Verlag, Berlin-Heidelberg, 1985. Zbl 0559.47040, MR 0787404
Reference: [11] DURIKOVIC V.: An initial-boundary value problem for quasi-linear parabolic systems of higher order.Ann. Polon. Math. 30 (1974), 145-164. Zbl 0249.35048, MR 0350206
Reference: [12] DURIKOVIC V.-DURIKOVICOVA, MA.: Some generic properties of nonlinear second order diffusional type problem.Arch. Math. (Brno) 35 (1999), 229-244. Zbl 1046.35016, MR 1725840
Reference: [13] DURIKOVIC V.-DURIKOVICOVA, MO.: Sets of solutions of nonlinear initial-boundary value problems.Topol. Methods Nonlinear Anal. 17 (2001), 157-182. Zbl 1066.35011, MR 1846985
Reference: [14] EIDEL'MAN S. D.: Parabolic Systems.Nauka, Moskva, 1964. (Russian) Zbl 0148.34604, MR 0167726
Reference: [15] EIDEL'MAN S. D.-IVASISEN S. D.: The investigation of the Green's matrix for homogeneous boundary value problems of a parabolic type.Tr. Mosk. Mat. Obs. 23 (1970), 179-234. (Russian) MR 0367455
Reference: [16] FUJITA H.: On some nonexistence and nonuniqueness theorems for nonlinear parabolic equation.In: Nonlinear Functional Analysis. Proc Sympos. Pure Math. 18, Part 1, Chicago 1968, Amer. Math. Soc, Providence, RJ, 1970, pp. 105-113. MR 0269995
Reference: [17] GORNIEWICZ L.: Topological Fixed Point Theory of Multivalued Mappings.Math. Appl. 495, Kluwer Academic Publishers, Dordrecht-Boston-London, 1999. Zbl 0937.55001, MR 1748378
Reference: [18] HENRY D.: Geometric Theory of Semilinear Parabolic Equations.Springer-Verlag, Berlin-Heidelberg-New York, 1981. Zbl 0456.35001, MR 0610244
Reference: [19] IVASISEN S. D.: Green Matrices of Parabolic Boundary Value Problems.Vyshsha Shkola, Kijev, 1990. (Russian)
Reference: [20] MARTELI M.-VIGNOLI A.: A generalized Leray-Schauder condition.Rend. Accad. Naz. Lincei 57 (1974), 374-379. MR 0417870
Reference: [21] MARTIN R. H.: Nonlinear Operator and Differential Equations in Banach Spaces.Yohn Villey and Sons, New York-London-Sydney-Toronto, 1975.
Reference: [22] QUINN F.: Transversal approximation on Banach manifolds.In: Global Analysis. Proc. Sympos. Pure Math. 15, Amer. Math. Soc, Providence, RI, 1970, pp. 213-223. Zbl 0206.25705, MR 0264713
Reference: [23] SADYRCHANOV R. S.: Selected Questions of Nonlinear Functional Analysis.Publishers ELM, Baku, 1989. (Russian)
Reference: [24] SMALE S.: An infinite dimensional version of Sard's theorem.Amer. J. Math. 87 (1965), 861-866. Zbl 0143.35301, MR 0185604
Reference: [25] SOLONIKOV V. A.: Estimations of L solutions for elliptic and parabolic systems.Tr. Math. Inst. Steklova 102 (1969), 446-472.
Reference: [26] SOLONIKOV V. A.: On Boundary value problem for linear parabolic differential systems of the general type.Tr. Math. Inst. Steklova 83 (1965), 3-162. (Russian)
Reference: [27] SEDA V.: Fredholm mappings and the generalized boundary value problem.Differential Integral Equations 8 (1995), 19-40. Zbl 0818.34014, MR 1296108
Reference: [28] TAYLOR A. E.: Introduction of Functional Analysis.John Wiley and Sons, Inc., New York, 1967. MR 0098966
Reference: [29] TRENOGIN V. A.: Functional Analysis.Nauka, Moscow, 1980. (Russian) Zbl 0517.46001, MR 0598629
Reference: [30] YOSIDA K.: Functional Analysis.Springer-Verlag, Berlin-Heidelberg-New York, 1966.
Reference: [31] ZEIDLER E.: Nonlinear Functional Analysis and its Applications I.Fixed-Point Theorems, Springer-Verlag, Berlin-Heidelberg-Tokyo, 1986. Zbl 0583.47050, MR 0816732
Reference: [32] ZEIDLER E.: Nonlinear Functional Analysis and its Applications II/B.Nonlinear Monotone Operators, Springer-Verlag, Berlin-Heidelberg-London-Paris-Tokyo, 1990. Zbl 0684.47029, MR 1033498
.

Files

Files Size Format View
MathSlov_55-2005-5_4.pdf 1.392Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo